1967 Ford Thunderbird Shop Manual
EAN: 978-1-60371-017-6
ISBN: 1-60371-017-5

Forel Publishing Company, LLC
3999 Peregrine Ridge Ct.
Woodbridge, VA 22192
Email address: webmaster@ForelPublishing.com
Website: http://www.ForelPublishing.com

This publication contains material that is reproduced and distributed under a license from Ford Motor Company. No further reproduction or distribution of the Ford Motor Company material is allowed without the express written permission of Ford Motor Company.

Note from the Editor

This product was created from the original Ford Motor Company’s publication. Every effort has been made to use the original scanned images, however, due to the condition of the material; some pages have been modified to remove imperfections.

Disclaimer

Although every effort was made to ensure the accuracy of this book, no representations or warranties of any kind are made concerning the accuracy, completeness or suitability of the information, either expressed or implied. As a result, the information contained within this book should be used as general information only. The author and Forel Publishing Company, LLC shall have neither liability nor responsibility to any person or entity with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the information contained in this book. Further, the publisher and author are not engaged in rendering legal or other professional services. If legal, mechanical, electrical, or other expert assistance is required, the services of a competent professional should be sought.
Group Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Identification</td>
<td>1</td>
</tr>
<tr>
<td>Brakes</td>
<td>2</td>
</tr>
<tr>
<td>Suspension, Steering, Wheels and Tires</td>
<td>3</td>
</tr>
<tr>
<td>Rear Axle</td>
<td>4</td>
</tr>
<tr>
<td>Drive Shaft and Clutch</td>
<td>5</td>
</tr>
<tr>
<td>Manual Shift Transmission (Not Applicable)</td>
<td>6</td>
</tr>
<tr>
<td>Automatic Transmission</td>
<td>7</td>
</tr>
<tr>
<td>Engine</td>
<td>8</td>
</tr>
<tr>
<td>Ignition System</td>
<td>9</td>
</tr>
<tr>
<td>Fuel System</td>
<td>10</td>
</tr>
<tr>
<td>Cooling System</td>
<td>11</td>
</tr>
<tr>
<td>Exhaust System</td>
<td>12</td>
</tr>
<tr>
<td>Charging System</td>
<td>13</td>
</tr>
<tr>
<td>Starting System</td>
<td>14</td>
</tr>
<tr>
<td>Lighting System, Horns and Instruments</td>
<td>15</td>
</tr>
<tr>
<td>Ventilating, Heating and Accessories</td>
<td>16</td>
</tr>
<tr>
<td>Body, Doors and Windows</td>
<td>17</td>
</tr>
<tr>
<td>Trim, Seats and Convertible Top</td>
<td>18</td>
</tr>
<tr>
<td>Schematics</td>
<td>19</td>
</tr>
<tr>
<td>Specifications and Special Service Tools</td>
<td></td>
</tr>
</tbody>
</table>

Specifications and Special Service Tools at end of each group.
FOREWORD

This shop manual provides the Service Technician with information for the proper servicing of the 1967 Thunderbird.

The maintenance schedule and procedures for maintenance operations are published in the 1967 Passenger Car Maintenance and Lubrication Manual.

The information in this manual is grouped according to the type of work being performed, such as diagnosis and testing, frequently performed adjustments and repairs, in-vehicle adjustments, overhaul, etc. Specifications and recommended special tools are included.

Refer to the opposite page for important vehicle identification data.

The descriptions and specifications in this manual were in effect at the time this manual was approved for printing. The Ford Motor Company reserves the right to discontinue models at any time, or change specifications or design, without notice and without incurring obligation.
VEHICLE WARRANTY NUMBER
The vehicle warranty number is the first line of numbers and letters appearing on the Warranty Plate (Fig. 1). The first number indicates the model year. The letter following the model year number indicates the manufacturing assembly plant. The next two numbers designate the Body Serial Code followed by a letter expressing the Engine Code. The group of six digits remaining on the first line indicate the Consecutive Unit Number.

VEHICLE DATA
The vehicle data appears on the second or lower line on the Warranty Plate. The first two numbers and a letter identify the Body Style. A letter or a number appears next indicating the Exterior Paint Color followed by a number-letter combination designating the Interior Trim. To the right of this code appears the Date Code indicating the date the car was manufactured. A two-digit number next designates the district in which the car was ordered and may appear in conjunction with a Domestic Special Order or Foreign Special Order number when applicable. The final two spaces indicate the Rear Axle Ratio (numbers for regular axles, letters for locking-types) and the Transmission type.

OFFICIAL VEHICLE IDENTIFICATION NUMBER
The official Vehicle Identification Number for title and registration purposes is stamped on the cowl top panel tab right hand side of center in the engine compartment (Fig. 2).
MODEL YEAR CODE
The number 7 designates 1967

ASSEMBLY PLANT CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Letter</th>
<th>Plant Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L</td>
<td>Michigan Truck Plant</td>
</tr>
<tr>
<td>B</td>
<td>N</td>
<td>Norfolk Truck Plant</td>
</tr>
<tr>
<td>C</td>
<td>P</td>
<td>Twin Cities Plant</td>
</tr>
<tr>
<td>D</td>
<td>R</td>
<td>San Jose Plant</td>
</tr>
<tr>
<td>E</td>
<td>S</td>
<td>Pilot Plant</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>Metuchen Plant</td>
</tr>
<tr>
<td>G</td>
<td>U</td>
<td>Louisville Plant</td>
</tr>
<tr>
<td>H</td>
<td>V</td>
<td>Wayne Plant</td>
</tr>
<tr>
<td>J</td>
<td>W</td>
<td>Wisconsin Plant</td>
</tr>
<tr>
<td>K</td>
<td>X</td>
<td>St. Louis Plant</td>
</tr>
</tbody>
</table>

BODY SERIAL AND STYLE CODES
The two-digit numeral which follows the assembly plant code identifies the body series. This two-digit number is used in conjunction with the Body Style Code, in the Vehicle Date, which consists of a two-digit number with a letter suffix. The following chart lists the Body Serial Codes, Body Style Codes and the model.

THUNDERBIRD

<table>
<thead>
<tr>
<th>Body Serial Code</th>
<th>Body Style Code</th>
<th>Painted Roof</th>
<th>Vinyl Roof-Landau</th>
<th>Vinyl Roof</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>65A</td>
<td>Painted Roof</td>
<td>Vinyl Roof-Landau</td>
<td>Vinyl Roof</td>
</tr>
<tr>
<td>82</td>
<td>65B</td>
<td>Painted Roof</td>
<td>Vinyl Roof-Landau</td>
<td>Vinyl Roof</td>
</tr>
<tr>
<td>84</td>
<td>57B</td>
<td>Painted Roof</td>
<td>Vinyl Roof-Landau</td>
<td>Vinyl Roof</td>
</tr>
</tbody>
</table>

ENGINE CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>8 Cyl. 390 Cu. In. (4V)</td>
</tr>
<tr>
<td>Q</td>
<td>8 Cyl. 428 Cu. In. (4V)</td>
</tr>
<tr>
<td>8</td>
<td>8 Cyl. 428 Cu. In. (4V) (1)</td>
</tr>
</tbody>
</table>

1 Low Compression

CONSECUTIVE UNIT NUMBER
Each model year, each assembly plant begins production with number 100001 and continues on for each unit built.

EXTERIOR PAINT COLOR CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>M-30-J</th>
<th>M-32-J</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1724-A</td>
<td>Black</td>
</tr>
<tr>
<td>B</td>
<td>1734-A</td>
<td>Lt. Aqua</td>
</tr>
<tr>
<td>C</td>
<td>1900-A</td>
<td>Dk. Gray Met.</td>
</tr>
<tr>
<td>E</td>
<td>1226-A</td>
<td>Lt. Blue</td>
</tr>
<tr>
<td>F</td>
<td>2067-A</td>
<td>Diamond Green</td>
</tr>
<tr>
<td>H</td>
<td>1619-A</td>
<td>White</td>
</tr>
<tr>
<td>I</td>
<td>921-A</td>
<td>Platinum</td>
</tr>
<tr>
<td>J</td>
<td>2065-A</td>
<td>Pewter Met.</td>
</tr>
<tr>
<td>L</td>
<td>1879-A</td>
<td>Dk. Green Met.</td>
</tr>
<tr>
<td>M</td>
<td>2008-A</td>
<td>Red</td>
</tr>
<tr>
<td>N</td>
<td>1070-A</td>
<td>Med. Turquoise Met.</td>
</tr>
<tr>
<td>O</td>
<td>1632-A</td>
<td>Bronze Met.</td>
</tr>
<tr>
<td>P</td>
<td>2066-A</td>
<td>Maroon Met.</td>
</tr>
<tr>
<td>R</td>
<td>1633-A</td>
<td>Yellow</td>
</tr>
<tr>
<td>T</td>
<td>1631-A</td>
<td>Lt. Beige</td>
</tr>
</tbody>
</table>

INTERIOR TRIM CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Trim Schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>Black Vinyl</td>
</tr>
<tr>
<td>2B</td>
<td>Blue Vinyl</td>
</tr>
<tr>
<td>2D</td>
<td>Red Vinyl</td>
</tr>
<tr>
<td>2F</td>
<td>Saddle Vinyl</td>
</tr>
<tr>
<td>2G</td>
<td>Ivy Gold Vinyl</td>
</tr>
<tr>
<td>2K</td>
<td>Aqua Vinyl</td>
</tr>
<tr>
<td>2U</td>
<td>Parchment Vinyl W/Black</td>
</tr>
<tr>
<td>4A</td>
<td>Black Vinyl (1)</td>
</tr>
<tr>
<td>4B</td>
<td>Blue Vinyl (1)</td>
</tr>
<tr>
<td>4G</td>
<td>Ivy Gold Vinyl (1)</td>
</tr>
<tr>
<td>4K</td>
<td>Aqua Vinyl (1)</td>
</tr>
<tr>
<td>4L</td>
<td>Lt. Silver Cloth and Lt. Silver Vinyl</td>
</tr>
<tr>
<td>4U</td>
<td>Parchment Vinyl W/Black</td>
</tr>
<tr>
<td>5A</td>
<td>Black Cloth and Black Vinyl</td>
</tr>
<tr>
<td>5U</td>
<td>Parchment Cloth and Parchment Vinyl</td>
</tr>
<tr>
<td>8A</td>
<td>Black Vinyl (1)</td>
</tr>
<tr>
<td>8B</td>
<td>Blue Vinyl (1)</td>
</tr>
<tr>
<td>8D</td>
<td>Red Vinyl (1)</td>
</tr>
<tr>
<td>8G</td>
<td>Ivy Gold Vinyl (1)</td>
</tr>
<tr>
<td>8K</td>
<td>Aqua Vinyl (1)</td>
</tr>
<tr>
<td>8L</td>
<td>Lt. Silver Cloth and Lt. Silver Vinyl</td>
</tr>
<tr>
<td>8U</td>
<td>Parchment Vinyl (1)</td>
</tr>
<tr>
<td>HA</td>
<td>Black Leather</td>
</tr>
<tr>
<td>LA</td>
<td>Black Leather</td>
</tr>
</tbody>
</table>

(1) Combined with cloth
GROUP 1—Vehicle Identification

DATE CODES

A number signifying the date precedes the month code letter. A second-year code letter will be used if the model exceeds 12 months.

<table>
<thead>
<tr>
<th>Month</th>
<th>Code First Year</th>
<th>Code Second Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>A</td>
<td>N</td>
</tr>
<tr>
<td>February</td>
<td>B</td>
<td>P</td>
</tr>
<tr>
<td>March</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>April</td>
<td>D</td>
<td>R</td>
</tr>
<tr>
<td>May</td>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>June</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>July</td>
<td>G</td>
<td>U</td>
</tr>
<tr>
<td>August</td>
<td>H</td>
<td>V</td>
</tr>
<tr>
<td>September</td>
<td>J</td>
<td>W</td>
</tr>
<tr>
<td>October</td>
<td>K</td>
<td>X</td>
</tr>
<tr>
<td>November</td>
<td>L</td>
<td>Y</td>
</tr>
<tr>
<td>December</td>
<td>M</td>
<td>Z</td>
</tr>
</tbody>
</table>

REAR AXLE RATIO CODES

A number designates a conventional axle, while a letter designates a locking differential.

<table>
<thead>
<tr>
<th>Code</th>
<th>Ratio</th>
<th>Code</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.00:1</td>
<td>A</td>
<td>3.00:1</td>
</tr>
<tr>
<td>6</td>
<td>2.80:1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISTRICT CODES (DS0)

Units built on a Domestic Special Order, Foreign Special Order, or other special orders will have the complete order number in this space. Also to appear in this space is the two-digit code number of the District which ordered the unit. If the unit is a regular production unit, only the District code number will appear.

<table>
<thead>
<tr>
<th>Code</th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Boston</td>
</tr>
<tr>
<td>13</td>
<td>New York</td>
</tr>
<tr>
<td>15</td>
<td>Newark</td>
</tr>
<tr>
<td>16</td>
<td>Philadelphia</td>
</tr>
<tr>
<td>17</td>
<td>Washington</td>
</tr>
<tr>
<td>21</td>
<td>Atlanta</td>
</tr>
<tr>
<td>22</td>
<td>Charlotte</td>
</tr>
<tr>
<td>24</td>
<td>Jacksonville</td>
</tr>
<tr>
<td>25</td>
<td>Richmond</td>
</tr>
<tr>
<td>27</td>
<td>Cincinnati</td>
</tr>
<tr>
<td>28</td>
<td>Louisville</td>
</tr>
<tr>
<td>32</td>
<td>Cleveland</td>
</tr>
<tr>
<td>33</td>
<td>Detroit</td>
</tr>
<tr>
<td>34</td>
<td>Indianapolis</td>
</tr>
<tr>
<td>35</td>
<td>Lansing</td>
</tr>
<tr>
<td>37</td>
<td>Buffalo</td>
</tr>
<tr>
<td>38</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>41</td>
<td>Chicago</td>
</tr>
<tr>
<td>42</td>
<td>Fargo</td>
</tr>
<tr>
<td>43</td>
<td>Milwaukee</td>
</tr>
<tr>
<td>44</td>
<td>Twin Cities</td>
</tr>
<tr>
<td>45</td>
<td>Davenport</td>
</tr>
<tr>
<td>51</td>
<td>Denver</td>
</tr>
<tr>
<td>52</td>
<td>Des Moines</td>
</tr>
<tr>
<td>53</td>
<td>Kansas City</td>
</tr>
<tr>
<td>54</td>
<td>Omaha</td>
</tr>
<tr>
<td>55</td>
<td>St. Louis</td>
</tr>
<tr>
<td>61</td>
<td>Dallas</td>
</tr>
<tr>
<td>62</td>
<td>Houston</td>
</tr>
<tr>
<td>63</td>
<td>Memphis</td>
</tr>
<tr>
<td>64</td>
<td>New Orleans</td>
</tr>
<tr>
<td>65</td>
<td>Oklahoma City</td>
</tr>
<tr>
<td>71</td>
<td>Los Angeles</td>
</tr>
<tr>
<td>72</td>
<td>San Jose</td>
</tr>
<tr>
<td>73</td>
<td>Salt Lake City</td>
</tr>
<tr>
<td>74</td>
<td>Seattle</td>
</tr>
<tr>
<td>75</td>
<td>Phoenix</td>
</tr>
<tr>
<td>81</td>
<td>Ford of Canada</td>
</tr>
<tr>
<td>83</td>
<td>Government</td>
</tr>
<tr>
<td>84</td>
<td>Home Office Reserve</td>
</tr>
<tr>
<td>85</td>
<td>American Red Cross</td>
</tr>
<tr>
<td>89</td>
<td>Transportation Services</td>
</tr>
<tr>
<td>90-99</td>
<td>Export</td>
</tr>
</tbody>
</table>

TRANSMISSION CODE

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Automatic (C6)</td>
</tr>
</tbody>
</table>
Brakes

PART 2-1—General Brake Service

Section	Page	Section	Page
1 Diagnosis and Testing | 2-1 | Power Brake Master Cylinder Push Rod Adjustment | 2-5
Brake Systems Tests | 2-1 | Hydraulic System Bleeding and Centralizing of the Differential Valve | 2-6
Road Test | 2-1 | 3 Cleaning and Inspection | 2-7
Disc Brake Trouble Symptoms and Possible Causes | 2-3 | Front Brakes | 2-7
Drum Brake Trouble Symptoms and Possible Causes | 2-4 | Rear Brakes | 2-7
2 Common Adjustments and Repairs | 2-5 | Booster Unit | 2-7
Parking Brake Linkage Adjustment | 2-5 |

1. **DIAGNOSIS AND TESTING**

BRAKE SYSTEM TESTS

BRAKE FLUID LEVEL AND HYDRAULIC SYSTEM

Always check the fluid level in the brake master cylinder reservoirs before performing the test procedures. If the fluid level is not within 1/4 to 1/2 inch of the top of the master cylinder reservoirs, add Rotunda Brake Fluid - Extra Heavy Duty - C6A919542-A (ESA-M6C25-A). The disc brake extra heavy duty brake fluid is colored for identification purposes. Do not mix low temperature brake fluids with the specified brake fluid.

1. Turn the ignition dual master cylinder brake system switch to the ACC or ON position. If the light on the brake warning lamp remains on, the condition may be caused by a defective switch, grounded switch wires or the differential pressure valve is not centered. Centralize the differential pressure valve as outlined under Bleeding the Brake System in this section of the manual. If the warning light remains on, the condition may be caused by a defective switch, grounded switch wires or the differential pressure valve is not centered. Centralize the differential pressure valve as outlined under Bleeding the Brake System in this section of the manual. If the warning light remains on, check the switch connector and wire for a grounded condition and repair or replace the wire assembly. If the condition of the wire is good, replace the brake warning lamp switch.

2. If the brake warning lamp does not light when a pressure differential condition exists in the brake system, the warning lamp may be burned out, the warning lamp switch is inoperative or the switch to lamp wiring has an open circuit. Check the bulb and replace it, if required. Check the switch to lamp wires for an open circuit and repair or replace them, if required. If the warning lamp still does not light, replace the switch.

BRAKE PEDAL FREE HEIGHT AND TRAVEL MEASUREMENTS

With the engine running for full power brake operation, measure the brake pedal free height, and check the brake pedal travel with the use of the Brake Pedal Pressure Gauge, Tool WRE-500-50 as follows:

Brake Pedal Free Height Measurement

1. Insert a slender, sharp pointed prod through the carpet and sound deadener to the dash panel metal and measure the distance to the brake pedal (Fig. 1).

2. If the position of the pedal is not within specification, check the brake pedal linkage for missing bushings or loose attaching bolts and replace them, if required.

3. If the pedal free height is still out of specification, check the brake pedal booster or master cylinder to be sure the correct parts are installed. Replace the defective parts as necessary.

4. The difference between the brake pedal free height and the depressed pedal measurement under a 50 pound load should be within the specified maximum pedal travel service specification B in Fig. 1.

5. If the pedal travel exceeds the specified maximum shown in Fig. 1, make several sharp reverse stops (equivalent to 50 pounds pedal pressure) with a forward stop before each. Move the vehicle in reverse and forward for a distance of approximately ten feet; then apply the brakes sharply and hold the brake pedal down until the vehicle is completely stopped. This will actuate the brake self-adjusters. If these stops do not bring the brake pedal travel within
GROUP 2—Brakes

specification, make several additional forward and reverse stops as outlined above.

6. If the second series of stops do not bring the brake pedal travel within specification, remove the brake drums and check the brake adjusters to make sure they are functioning. Check the brake linings for wear or damaged parts and non-functioning adjusters. Adjust the brake lining outside diameter to the approximate inside diameter of the brake drum with Rotunda Tool HRE-8650 (Fig. 11, Part 2-2).

7. If all the brake adjusters, brake drums and linings are functional and the brake travel is not within specifications, check the pedal linkage for missing bushings or loose attachments. Bleed the brakes and centralize the differential valve.

POWER BRAKE FUNCTIONAL TEST

1. With the transmission in neutral, stop the engine and apply the parking brake. Depress the brake pedal several times to exhaust all vacuum in the system.

2. With the engine shut off, exhaust all vacuum in the system. Depress the brake pedal and hold it in the applied position. If the pedal gradually falls away under this pressure, the hydraulic system is leaking. Check all tubing, hoses, calipers, wheel cylinders and connections for leaks.

3. With the engine shut off and all vacuum in the system exhausted, depress the pedal and hold it in the applied position. Start the engine. If the vacuum system is operating, the pedal will tend to fall away under foot pressure and less pressure will be required to hold the pedal in the applied position. If no action is felt, the vacuum booster system is not functioning.

If the brake pedal movement feels spongy, bleed the hydraulic system to remove air from the system. Refer to Hydraulic System Bleeding, Section 2. Also, check for leaks or insufficient fluid.

LOCKED WHEEL BRAKE

Should one of the wheel brakes be locked and the vehicle must be moved, open the bleeder screw long enough to let out a few drops of brake fluid. This bleeding operation will release the brakes but will not correct the cause of trouble.

VACUUM TESTS—VACUUM RELEASE PARKING BRAKES

Visually check the operation of the brake linkage as the park brake pedal is depressed. Then, check the operation of the brake linkage when the manual release lever is activated. These checks should indicate whether the manual parking brake control link-

FIG. 1—Brake Pedal Height and Travel Measurements

Tool: WRE-500-50

FIG. 2—Brake Pedal Pressure Gauge Installed

age is operating properly or requires repair or adjustment due to inability of the parking brake to hold against moderate vehicle movement. Perform tests of the parking brake system and controls after making certain the linkage and manual controls operate properly.

Diagnosis of vacuum release systems is basically similar to electrical diagnosis. That is, the vacuum system must be complete from the source to the vacuum components. Any leaks, like a bad connection, will make the system inoperative. If a leak develops in one of the vacuum systems, one or all of the vacuum components may become inoperative. This would be dependent on the location of the vacuum leak. If the leak is in the vacuum supply, all systems will become inoperative. If the leak is in the component side of the vacuum control for the specific system, all other systems will operate when the leaking system is off.

When testing a parking brake vacuum release system, a minimum of 10 inches of vacuum (Hg.) should be available at all points where vacuum is applied. This can be checked with a Rotunda Fuel Pump Tester Gauge (ARE 345) and two Distributor Tester hose adapters (Marked Q) connected to-
POSSIBLE CAUSES OF TROUBLE

<table>
<thead>
<tr>
<th>Possible Cause</th>
<th>Excessive Pedal Travel</th>
<th>Brake Roughness or Chatter (Pedal Pumping)</th>
<th>Excessive Pedal Effort</th>
<th>Pull</th>
<th>Rattle</th>
<th>Brakes Heat Up During Driving and Fail to Release</th>
<th>Leaky Wheel Cylinder</th>
<th>Grabbing or Uneven Braking Action</th>
<th>No Braking Effect When Pedal is Depressed</th>
<th>Brakes for the Respective System Do Not Apply</th>
<th>Pedal Gradually Moves Toward Floor or Dash Panel</th>
<th>Warning Lamp Stays Lit</th>
<th>Warning Lamp Does Not Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoe and Lining Knock-back after Violent Cornering or Rough Road Travel</td>
<td></td>
</tr>
<tr>
<td>Shoe and Lining Assembly not Properly Seated or Positioned</td>
<td></td>
</tr>
<tr>
<td>Leak or Insufficient Fluid in System or Caliper</td>
<td></td>
</tr>
<tr>
<td>Loose Wheel Bearing Adjustment</td>
<td></td>
</tr>
<tr>
<td>Damaged or Worn Caliper Piston Seal</td>
<td></td>
</tr>
<tr>
<td>Improper Master Cylinder Push Rod Adjustment</td>
<td></td>
</tr>
<tr>
<td>Excessive Rotor Runout or Out-of-Parallel</td>
<td></td>
</tr>
<tr>
<td>Incorrect Tire Pressure</td>
<td></td>
</tr>
<tr>
<td>Frozen or Seized Pistons</td>
<td></td>
</tr>
<tr>
<td>Brake Fluid, Oil or Grease on Linings</td>
<td></td>
</tr>
<tr>
<td>Shoe and Lining Worn Below Specifications</td>
<td></td>
</tr>
<tr>
<td>Proportioning Valve Malfunction</td>
<td></td>
</tr>
<tr>
<td>Booster Inoperative</td>
<td></td>
</tr>
<tr>
<td>Caliper Out of Alignment with Rotor</td>
<td></td>
</tr>
<tr>
<td>Loose Caliper Attachment</td>
<td></td>
</tr>
<tr>
<td>Metering Valve Seal Leaks</td>
<td></td>
</tr>
<tr>
<td>Excessive Clearance Between Shoe and Caliper or Between Shoe and Splash Shield</td>
<td></td>
</tr>
<tr>
<td>Shoe Hold Down Clips Missing or Improperly Positioned</td>
<td></td>
</tr>
<tr>
<td>Operator Riding Brake Pedal</td>
<td></td>
</tr>
<tr>
<td>Scores in the Cylinder Bore</td>
<td></td>
</tr>
<tr>
<td>Corrosion Build-Up in the Cylinder Bore or on the Piston Surface</td>
<td></td>
</tr>
<tr>
<td>Bleeder Screw Still Open</td>
<td></td>
</tr>
<tr>
<td>Caliper Out-of-Parallel with Rotor</td>
<td></td>
</tr>
<tr>
<td>One Section Dual Brake System is Inoperative</td>
<td></td>
</tr>
<tr>
<td>Differential Pressure Valve is Not Centered</td>
<td></td>
</tr>
<tr>
<td>Wiring to Warning Lamp Switch is Grounded</td>
<td></td>
</tr>
<tr>
<td>Warning Lamp Switch is Grounded</td>
<td></td>
</tr>
<tr>
<td>Warning Lamp is Burned Out</td>
<td></td>
</tr>
<tr>
<td>Warning Lamp Switch Has an Open Circuit</td>
<td></td>
</tr>
<tr>
<td>Warning Lamp Switch is Inoperative</td>
<td></td>
</tr>
<tr>
<td>Wiring to Warning Lamp Has Open Circuit</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 3—Disc Brake Trouble Symptoms and Possible Cause
<table>
<thead>
<tr>
<th>POSSIBLE CAUSES OF TROUBLE</th>
<th>One Brake Drag</th>
<th>All Brakes Drag</th>
<th>Hard Pedal</th>
<th>Spongy Pedal</th>
<th>Car Pulls to One Side</th>
<th>One Wheel Locks</th>
<th>Brakes Chatter</th>
<th>Excessive Pedal Travel</th>
<th>Pedal Gradually Goes to Floor</th>
<th>Brakes Uneven</th>
<th>Shoe Click After Release</th>
<th>Noisy or Grabbing Brakes</th>
<th>Brakes Do Not Apply</th>
<th>Brakes For the Respective System Do Not Apply</th>
<th>Warning Lamp Stays Lit</th>
<th>Pedal Gradually Moves Toward Floor or Dash Panel</th>
<th>Warning Lamp Does Not Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Resistance at Pedal or Shoes</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Brake Line Restricted</td>
<td>X X X X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Leaks or Insufficient Fluid</td>
<td></td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>Improper Tire Pressure</td>
<td></td>
</tr>
<tr>
<td>Distorted or Improperly Adjusted Brake Shoe</td>
<td></td>
</tr>
<tr>
<td>Faulty Retracting Spring</td>
<td></td>
</tr>
<tr>
<td>Drum Out of Round</td>
<td></td>
</tr>
<tr>
<td>Lining Glazed or Worn</td>
<td></td>
</tr>
<tr>
<td>Oil or Grease on Lining</td>
<td></td>
</tr>
<tr>
<td>Loose Carrier Plate</td>
<td></td>
</tr>
<tr>
<td>Loose Lining</td>
<td></td>
</tr>
<tr>
<td>Scored Drum</td>
<td></td>
</tr>
<tr>
<td>Dirt on Drum-Lining Surface</td>
<td></td>
</tr>
<tr>
<td>Faulty Brake Cylinder</td>
<td>X X X X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dirty Brake Fluid</td>
<td></td>
</tr>
<tr>
<td>Faulty Master Cylinder</td>
<td></td>
</tr>
<tr>
<td>Air in Hydraulic System</td>
<td></td>
</tr>
<tr>
<td>Self Adjusters Not Operating</td>
<td></td>
</tr>
<tr>
<td>Insufficient Shoe-to-Carrier Plate Lubrication</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>Tire Tread Worn</td>
<td></td>
</tr>
<tr>
<td>Poor Lining-to-Drum Contact</td>
<td></td>
</tr>
<tr>
<td>Loose Front Suspension</td>
<td></td>
</tr>
<tr>
<td>Threads Left by Drum Turning Tool</td>
<td></td>
</tr>
<tr>
<td>Pulls Shoe Sideways</td>
<td></td>
</tr>
<tr>
<td>Cracked Drum</td>
<td></td>
</tr>
<tr>
<td>One Section Dual Brake System is Inoperative</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>Differential Pressure Valve is Not Centered</td>
<td></td>
</tr>
<tr>
<td>Wiring to Warning Lamp Switch is Grounded</td>
<td></td>
</tr>
<tr>
<td>Warning Lamp Switch is Grounded</td>
<td></td>
</tr>
<tr>
<td>Warning Lamp is Burned Out</td>
<td></td>
</tr>
<tr>
<td>Warning Lamp Switch Has an Open Circuit</td>
<td></td>
</tr>
<tr>
<td>Wiring to Warning Lamp Has Open Circuit</td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 4—Drum Brake (and General System) Trouble Symptoms and Possible Causes
2 COMMON ADJUSTMENTS AND REPAIRS

PARKING BRAKE LINKAGE ADJUSTMENT

Check the parking brake cables when the brakes are fully released. If the cables are loose, adjust them as follows:

1. Fully release the parking brake pedal by pushing down the manual release lever.
2. Raise the vehicle.
3. Depress the parking brake pedal 1 1/4 inch from its normal released position.
4. Turn the adjusting nut forward against the equalizer (Fig. 5) until a moderate drag is felt when turning the rear wheels (approximately 100 lbs of force at the outside diameter of the tire is required to turn the rear wheels).
5. Release the parking brake, and check to make sure that the brake shoes return to the fully released position.
6. Depress the parking brake pedal 1 1/2 inches. Under normal conditions, this will satisfactorily hold the vehicle.
7. Release the parking brake again, and check as in step 5.
8. Depress the pedal 1/2 inch. The brakes should not drag.
9. If the rear brakes do not fully release, check the cables for kinks or binds. Free the cables as required.

POWER BRAKE MASTER CYLINDER PUSH ROD ADJUSTMENT

The push rod is designed with a self-locking adjustment screw to provide the correct relationship between the booster piston and the master cylinder pistons. The adjustment screw is set to the correct height at the time of original assembly of the power unit. Under normal service the adjustment screw does not require any further attention providing the push rod assembly remains in the original unit. The distance from the end of the adjustment screw to the mounting surface of the booster body can be checked either with a micrometer depth gauge to a dimension of 0.980, 0.995 inch, or with a height gauge as shown in Fig. 6. The details for making a height gauge are given in Fig. 7.

To adjust the push rod, hold the serrated end of the rod with cross-milled pliers and turn the adjustment screw in to shorten, or out to lengthen.

After assembly of the master cylinder to the power section, the piston cup in the hydraulic cylinder should just clear the compensating port hole when the unit is in the fully released position. This can be checked by placing a few vacuum lines and the parking brake release vacuum motor. Use the Rotunda Vacuum and Fuel Pump Tester ARE 345. This can be accomplished by removing the hose from each component and attaching it to the vacuum gauge. Connect two distributor testers vacuum hose adapters together with a coupling as a connector to attach the gauge. A minimum of ten inches of vacuum is required to actuate the parking brake vacuum motor. Do not remove any of the vacuum hoses from the junction block unless the junction block is being replaced, as the plastic nipples are thin and very brittle and damage may result. If a minimum reading is not present when checking each of the aforementioned components, they must be replaced.

FIG. 5—Parking Brake Adjustment

FIG. 6—Push Rod Adjustment

FIG. 7—Push Rod Gauge Dimensions
drops of brake fluid over the compensating port and applying light air pressure to the output port of the master cylinder. If air bubbles appear, the port is open. If the primary piston cup overlaps the compensating port, there will be no flow of air through the compensating port. If this condition exists, the adjustment screw should be turned into the push rod a slight amount or until the compensating port is open.

HYDRAULIC SYSTEM BLEEDING AND CENTRALIZING OF THE DIFFERENTIAL VALVE

When any part of the hydraulic system has been disconnected for repair or replacement, air may enter the system and cause spongy pedal action. Bleed the hydraulic system after it has been properly connected, to be sure that all air is expelled.

The hydraulic system can be bled manually or with pressure bleeding equipment.

After a brake hydraulic system malfunction has been corrected and the hydraulic system has been bled, the dual-brake warning lamp will usually continue to burn when the ignition switch is turned to ON. This is due to the pressure differential created during the bleeding operation, causing the valve to move to an off-center position (low pressure side). This depresses the warning lamp switch plunger, closing the contact points which turn on the brake warning light. The differential valve will remain off-center and the warning lamp will remain lit until the valve is centralized. When the valve is centralized the spring loaded switch plunger drops into the groove in the valve and the warning light switch continuity is broken at the switch contact points.

To centralize the valve a pressure differential must again be created on the side opposite the brake hydraulic system that was bled last. For example: If the primary (front brake) system was bled last, the pressure differential (reduced pressure) required to centralize the valve will be created on the secondary system (rear brake) side of the differential valve.

PRESSURE BLEEDING

Bleed the longest lines first. The bleeder tank should contain enough new Rotunda Brake Fluid to complete the bleeding operation. Use Rotunda Brake Fluid — Extra Heavy Duty — Part Number C6AZ-19542-A (ESA- M6C25-A). The brake fluid is colored blue for identification purposes. Do not mix low temperature brake fluid with the specified disc brake fluid during the bleeding operations. Never re-use brake fluid that has been drained from the hydraulic system. The tank should be charged with approximately 10 to 30 pounds of air pressure. Never exceed 50 pounds pressure.

1. Clean all dirt from the master cylinder reservoir cover.
2. Remove the master cylinder reservoir cover and rubber gasket, and fill the master cylinder reservoir with the specified brake fluid. Install the pressure bleeder adapter tool to the master cylinder, and attach the bleeder tank hose to the fitting on the adapter.
3. Loosen the bleed screw, located on the side of the master cylinder, and bleed the master cylinder until the fluid is free of air bubbles; then, tighten the bleed screw.
4. If the rear wheel cylinders and the secondary brake system is to be bled, position a 3/8 inch box wrench (Fig. 8) on the bleeder fitting on the right rear brake wheel cylinder. Attach a bleeder tube to the bleeder fitting. The end of the tube should fit snugly around the bleeder fitting.

5. Open the valve on the bleeder tank to admit pressurized brake fluid to the master cylinder reservoir.
6. Submerge the free end of the tube in a container partially filled with clean brake fluid, and loosen the bleeder fitting.
7. When air bubbles cease to appear in the fluid at the submerged end of the bleeder tube, close the bleeder fitting and remove the tube.
8. Repeat steps 3 through 7 at the left wheel cylinder of the secondary system being bled.
9. If the primary (front brake) system is to be bled, remove the front wheel covers, and the front wheel and tire assemblies to gain access to the bleeder fittings on the disc brake calipers. Repeat steps 4 through 7, starting at the right front disc caliper and ending at the left front disc caliper.
10. When the bleeding operation is completed, close the bleeder tank valve and remove the tank hose from the adapter fitting.

11. Be sure that the front brake pistons are returned to their normal positions and that the shoe and lining assemblies are properly seated by depressing the brake pedal several times until normal pedal height exists. Install the front wheel and tire assemblies on the front wheels, and torque the mounting bolts to specification. Install the wheel covers.

12. Remove the Pressure Bleeder Adapter Tool. Fill the master cylinder reservoir to within 1/4 to 1/2 inch from the top. Install the master cylinder cover and gasket. Be sure the diaphragm type gasket is properly positioned in the master cylinder cover.

13. Centralize the pressure differential valve as follows:

CENTRALIZING THE PRESSURE DIFFERENTIAL VALVE

After a failure of the primary (front brake) or secondary (rear brake) system has been repaired and bled, the dual-brake warning light will usually continue to be illuminated due to the pressure differential valve remaining in the off-center position. Front wheel balancing operations can also cause a pressure differential in the primary (front) brake system, illuminating the brake warning light.

To centralize the pressure differential valve and turn off the warning light after a repair operation, a pressure differential or unbalance condition must be created in the opposite brake system from the one that was bled last.

1. Turn the ignition switch to the ACC or ON position. Loosen the differential valve assembly brake tube nut at the outlet port on the opposite side of the brake system that was wheel balanced, repaired and/or bled last. Depress the brake pedal slowly to build line pressure until the pressure differential valve is moved to a centralized position and the brake warning light goes out; then, immediately tighten the outlet port tube nut.
2. Check the fluid level in the master cylinder reservoirs and fill them to within 1/4 to 1/2 inch of the top with the specified brake fluid, if necessary.
3. Turn the ignition switch to the OFF position.
4. Before driving the vehicle, check the operation of the brakes and be sure that a firm pedal is obtained.
FRONT BRAKES

1. Remove the wheel and tire, brake shoe retainers, and the shoe and linings as outlined in Part 2-2, Section 2.

2. Make three thickness measurements with a micrometer across the middle section of the shoe and lining. Take one reading at each side and one in the center. If the assembly has worn to a thickness of 0.231 inch (Shoe and lining together) or 0.066 inch (Lining material only) at any one of the three measuring locations, or if the lining shows evidence of brake fluid or oil contamination, replace all (4) shoe and linings on both front wheels.

3. Check caliper to spindle attaching bolt and caliper bridge bolt torque. Torque to specification if required.

4. To check rotor runout, first eliminate the wheel bearing end play by tightening the adjusting nut to 5 inch pounds torque. After tightening the nut, check to see that the rotor can still be rotated.

5. Clamp a dial indicator to the caliper housing so that the stylus contacts the rotor at a point approximately 1 inch from the outer edge. Rotate the rotor and take an indicator reading. If the reading exceeds 0.002 inch total lateral runout on the indicator, replace or resurface the disc brake rotor. The following requirements must be met when resurfacing disc brake rotors:

 Rotunda Disc Brake Attachment FRE-2249-2 is the only approved tool to be used to resurface the disc brake rotors. The step-by-step resurfacing procedure provided with the tool must be adhered to.

 The finished braking surfaces of the rotor must be flat and parallel within 0.0007 inch; lateral runout must not exceed 0.002 inch total indicator reading, and the surface finish of the braking surfaces are to be 85/15 micro inches. The minimum limiting dimensions (Fig. 9) from the inboard bearing cup to the inboard rotor face (dimension B) and the outboard rotor face and the inboard bearing cup (dimension A) must be observed when removing material from the rotor braking surfaces.

 When the runout check is finished, be sure to adjust the bearings as outlined in Group 3, in order to prevent bearing failure.

 6. Check the rotor for scoring. Minor scores can be removed with a fine emery cloth. If the rotor is excessively scored, refinish it as outlined in step 5 or replace the rotor, if required.

 7. Visually check the caliper. If it is cracked or if excess leakage is evident, it should be replaced. Slight leakage around the pistons or seized pistons indicates removal and disassembly.

 8. If upon disassembly the caliper is found to be damaged, or if the cylinder bores are scored or excessively worn, replace the assembly.

 The two halves of the caliper assembly should never be separated. Damage or failure of one requires replacement of both as a unit.

 9. Check brake hoses for signs of cracking, leaks, or abrasion. Replace if necessary.

REAR BRAKES

1. Remove the wheel from the drum, and remove the drum as outlined in Part 2-2, Section 2. Wash all the parts except the brake shoes in a cleaning fluid and dry with compressed air.

2. Brush all dust from the backing plate and interior of the brake drum.

3. Inspect the brake shoes for excessive lining wear or shoe damage. If the lining is worn to within 1/32 inch of the rivet heads, or if the shoes are damaged, they must be replaced. Replace any lining that has been contaminated with oil, grease or brake fluid. Replace the lining in axle sets (4). Prior to replacing lining in axle sets (4). Prior to replacement of the lining, the drum diameter should be checked to determine if oversize linings must be installed.

4. Check the condition of the brake shoes, retracting springs, and drum for signs of overheating. If the shoes have a slight blue coloring, or if the springs show a change in free length, indicating overheating, replacement of the retracting and hold down springs and the parking brake cable is necessary. Overheated springs lose their pull and could cause the new lining to wear prematurely if they are not replaced.

5. If the car has 30,000 or more miles of operation on the brake linings, or signs of overheating are present when releasing brakes, the wheel cylinders should be disassembled and inspected for wear and dirt in the cylinder. The cylinder cups and other parts contained in the overhaul kit should be replaced, thus avoiding future problems.

6. Inspect all other brake parts and replace any that are worn or damaged.

7. Inspect the brake drums and, if necessary, refinish. Refer to Part 2-2, Section 4 for refinishing.

BOOSTER UNIT

Check the booster operation as noted in Part 2-1, Section 1. Power Brake Functional Test. If the brake booster is damaged or is inoperative, the complete booster must be replaced.
PART 2-2—Brake System

1 DESCRIPTION AND OPERATION

The brake system employs disc brakes on the front wheels and single anchor, internal expanding and self-adjusting brake assemblies on the rear wheels. The system is powered by a dual-master cylinder and a booster as standard equipment.

DUAL-MASTER CYLINDER

The dual-master cylinder brake system has been incorporated in all vehicle models to provide increased vehicle safety. The system consists of a dual-master cylinder, pressure differential valve assembly and a switch. The switch on the differential valve activates a dual-brake warning light, located on the instrument panel.

The dual-master cylinder brake system is similar to a conventional (single) brake master cylinder system. In the dual-system, two master cylinders are combined in a single cast iron casting (Fig. 1). One portion activates the primary (front) brake system and the other activates the secondary (rear) brake system (Fig. 1). Hydraulic fluid leakage or failure of one of the systems does not impair the operation of the other portion of the dual-brake system. A dual-brake warning light signals a failure of either the front (primary) or rear (secondary) brake system.

The dual-master cylinder has the master cylinder outlet ports for the rear (secondary) brake system located on the bottom of the master cylinder body. Master cylinder hydraulic system bleed screws are located in the outboard side of the master cylinder casting.

The code letter A is stamped on the end of the master cylinder body casting for easy service identification.

A brake pressure differential valve assembly (Fig. 2) incorporating a hydraulically operated mechanical switch is utilized to operate a dual-brake warning light, located on the instrument panel to the right of the clock.

Brake tubes are connected from the dual-master cylinder front (primary) and rear (secondary) brake systems to the pressure differential valve.

The pressure differential valve is mounted vertically on the frame side rail. The primary (front) brake system outlet tubes are connected to the ports located in the upper side of the differential valve assembly and the secondary (rear) brake system outlet tubes are connected to the ports located in the lower side of the differential valve assembly.

Hydraulic pressure for both rear wheel brakes is provided from the single secondary (rear) brake outlet line, located opposite the secondary system inlet port of the differential valve. A proportioning valve is located in the secondary (rear) brake system line that leads to the brake hose bracket on the rear axle housing. The brake hose bracket serves as a junction point for the individual brake lines that lead to the wheel cylinders of right and left rear brake components.

OPERATION

When the brake pedal is depressed, both the primary (front brake) and secondary (rear brake) master cylinder pistons are moved simultaneously to exert hydraulic fluid pressure on their independent hydraulic system. The fluid displacement of the dual-master cylinders is proportioned to fulfill the requirements of each of the two independent hydraulic brake systems (Fig. 1).

If a failure of the rear (secondary) brake system should occur, initial brake pedal movement causes the unrestricted secondary piston to bottom in the master cylinder bore. Primary piston movement displaces hydraulic fluid in the primary section of the dual-master cylinder to actuate the front brake system.

Should the front (primary) brake system fail, initial brake pedal movement causes the unrestricted primary piston to bottom out against the secondary piston. Continued downward movement of the brake pedal moves the secondary piston to displace hydraulic fluid in the rear brake system, actuating the rear brakes.

The increased pedal travel and the increased pedal effort required to compensate for the loss of the failed portion of the brake system provides...
FIG. 1—Dual-Master Cylinder

FIG. 2—Pressure Differential Valve and Brake Warning Lamp Switch Operation — Typical
a warning that a partial brake system failure has occurred. When the ignition switch is turned to the start position a dual-brake warning light provides a visual indication that the warning lamp is functional. When the ignition switch is turned to the on or ACC position, a dual-brake warning light on the instrument panel also provides a visual indication if one portion of the dual-brake system has become inoperative.

Should a failure of either the front or rear brake hydraulic system occur, the hydraulic fluid pressure differential resulting from the pressure loss of the failed brake system forces the valve toward the low pressure area to illuminate the brake warning light (Fig. 2). A mechanically operated electrical switch is located on the side of the pressure differential valve assembly between the front and rear brake system inlet ports. The inner-end of the spring loaded switch plunger contacts the bottom of a tapered shoulder groove in the center of the valve (Fig. 2). O-ring seals are retained in seal ring lands near each end of the valve.

Should a failure of the rear brake system occur, hydraulic fluid pressure in the rear brake system would drop. During brake pedal operation the fluid pressure build-up of the front brake system forces the valve to move toward the low pressure area, or toward the rear brake system outlet port (Fig. 2). Movement of the differential valve forces the switch plunger upward over the tapered shoulder of the valve to close the switch electrical contacts and light the dual brake warning lamp, signalling a brake system failure.

In the event a front brake system failure should occur, greater pressure from the rear brake system during brake pedal operation forces the valve forward, moving the switch plunger upward onto the valve ramp to light the brake system warning lamp. However, failure of either the front or rear system does not impair operation of the other brake system.

DISC BRAKE ASSEMBLIES — FRONT WHEELS

RELATION AND FUNCTION OF COMPONENT PARTS

The disc brake is a fixed caliper, opposed piston, non-energized, ventilated disc type, actuated by a hydraulic system (Fig. 3). There is no lateral movement of either the disc (rotor) or the caliper. The caliper assembly consists of two caliper housings bolted together with each half containing two cylinder bores of 1 15/16 inch diameter. Each cylinder bore contains a piston with an attached molded rubber dust boot to seal the cylinder bore from contamination (Fig. 4). Square-section rubber piston seals are positioned in grooves in the cylinder bores.

The piston seals perform three important tasks:
1. They provide hydraulic sealing between the cylinders and pistons.
2. They return the pistons to released position, when hydraulic pressure is released.
3. They maintain the shoes in correct adjustment at all times (comparable to the automatic adjusters in drum-type brakes.

The cylinders are connected hydraulically by means of internal passages in the caliper housings and an external transfer tube between the two halves of the caliper assembly. One bleeder screw and fluid inlet fitting is provided on each caliper assembly.

The shoe and lining assemblies are located in between parallel machined abutments within the caliper, and are supported radially by tabs on the

FIG. 3 — Disc Brake Assembly

FIG. 4 — Caliper Assembly-Sectional View

FIG. 5 — Function of Piston Seal
outer ends of the shoe assemblies (Figs. 9 and 22). The shoes slide axially in the caliper abutments by means of the tabs which ride on machined ledges (bridges) when hydraulic pressure is applied to the piston (Fig. 9). A shoe and lining assembly consists of friction material bonded to a metal plate called the shoe. It is replaced as a unit. Brake torque is absorbed by the mating of the shoe end against the caliper abutments (Fig. 22). Two spring clips are attached to the top of the caliper to retain the shoe and lining assemblies. The caliper assembly is mounted on the front wheel spindle to the rear of the wheel vertical centerline.

The cast iron disc is of the ventilated rotor type incorporating fins and is attached to, and rotates with, the wheel hub. The outside diameter of the rotor is 11.960 inches and the inside diameter is 7.785 inches. This type of design increases cooling area and permits circulation of air through the rotor resulting in more rapid cooling of the brake. A splash shield bolted to the spindle is used primarily to prevent road contaminants from contacting the inboard rotor and lining surfaces (Fig. 10). The wheel provides protection for the outboard surface of the rotor.

Operation

As the brake pedal is depressed, hydraulic pressure from the master cylinder forces the pistons out of the caliper bores against their respective shoe and lining assemblies. The force of the pistons against the shoes moves the linings against both sides of the revolving rotor to effect braking action.

During brake application, the rubber seal in each piston stretches as the piston moves against the shoe (Fig. 5). When the hydraulic pressure against the piston is released, the seal relaxes or rolls back. This roll-back action pulls the piston away from the shoe approximately 0.005 inch to relieve the force of the lining against the rotor and thereby, provides the required running clearance. Also, inherent rotor runout contributes to the maintenance of running clearance.

Automatic adjustment is achieved by the pistons sliding in the seals outward from the cylinder bores. The piston gradually changes its position relative to the seal as the lining wears and, thus, maintains the correct adjustment location at all times.

When the brakes are in the unapplied position, there is no hydraulic pressure to the calipers.

A proportioning valve, located between the pressure differential valve and the rear brake wheel cylinder, provides balanced braking action between the front and rear brakes and the front (primary) and rear (secondary) brake systems under the full range of braking conditions. By regulating the hydraulic pressure applied to the rear wheel cylinders, the valve limits rear braking action when high pressures are required at the front brakes. In this manner, premature rear wheel skid is prevented. The proportioning valve is serviced as an assembly and is never adjusted or overhauled.

SELF-ADJUSTING BRAKE ASSEMBLIES-REAR WHEELS

The self-adjusting brake mechanism consists of a cable, cable guide, adjusting lever, adjusting screw assembly, and adjuster spring (Fig. 6). The cable is hooked over the anchor pin at the top and is connected to the lever at the bottom. The cable is connected to the secondary brake shoe by means of the cable guide. The adjuster spring is hooked to the primary brake shoe and to the lever. The automatic adjuster operates only when the brakes are applied while the car is moving rearward and only when the secondary shoe is free to move toward the drum beyond a predetermined point.

OPERATION

With the vehicle moving rearward and the brakes applied, the wrap-around action of the shoes following the drum forces the upper end of the primary shoe against the anchor pin. The action of the wheel cylinder moves the upper end of the secondary shoe away from the anchor pin. The movement of the secondary shoe causes the cable to pull the adjusting lever upward and against the end of a tooth on the adjusting screw star-wheel. The upward travel of the lever increases as lining wear increases. When the lever can move upward far enough, it passes over the end of the tooth and engages the tooth. When the brakes are released, the adjuster spring pulls the lever downward causing the star-wheel to turn and expand the shoes. The star-wheel is turned one tooth at a time as the linings progressively wear.

With the vehicle moving forward and the brakes applied, the secondary shoe

FIG. 6—Thunderbird Self Adjusting Brake Assembly-Rear Wheel
is against the anchor pin and the primary shoe is moved toward the drum. Therefore, the adjuster does not operate.

The conventional parking brake lever, link, and spring are used in the rear brake. The anchor pins are fixed and non-adjustable.

BOOSTER SYSTEM

The tandem diaphragm type booster is a self-contained vacuum hydraulic power braking unit. It is of the vacuum suspended type which utilizes engine intake manifold vacuum and atmospheric pressure for its power. Adjustment of the push rod is the only service permitted on this booster. The booster unit is to be exchanged when it is determined to be defective.

PARKING BRAKES

An independent foot-operated parking brake control (Fig. 7) actuates the rear wheel brake shoes through a cable linkage. The operating cable is routed from the parking brake control assembly to the equalizer lever which is attached to the equalizer assembly (Fig. 5, Part 2-1). The rear brake cables connect the equalizer assembly to the parking brake lever at each rear secondary shoe (Figs. 7 and 19).

OPERATION

When the pedal is depressed the secondary brake shoes are forced against the rear brake drums. The pedal is held in the applied position by spring action on a pinion (Fig. 7).

A vacuum power unit will release the parking brakes automatically when the transmission selector lever is moved into any drive position with the engine running. The brakes will not release automatically, however, when the selector lever is in the neutral or park position with the engine running, or in any position with the engine off.

The parking brake control assembly is mounted to the left cowl side panel (Fig. 19). The pedal assembly pivots on a stationary pedal mount (Fig. 7). The release lever is actuated automatically by the vacuum control or by a manual release handle which is connected to the lever through a slot and rivet pin (Fig. 7).

The vacuum release unit with mounting bracket is riveted to the control assembly. The vacuum actuated piston within the unit is connected by a link to the upper end of the release handle which actuates the release lever to move the spring out of the locked position (Fig. 7). The lower end of the release handle extends out for alternate manual release in the event of vacuum release failure or for optional manual release at any time.

Hoses connect the release unit and the engine manifold to a vacuum release valve in the transmission neutral safety switch (Figs. 7 and 8). Moving the transmission selector lever into any drive position with the engine running will open the release valve to connect engine manifold vacuum to one side of the actuating piston in the power unit. The pressure differential thus created will cause the piston and link to pull the manual release handle which, in turn, actuates the release lever.

IN-CAR ADJUSTMENTS AND REPAIRS

After any brake service work, obtain a firm brake pedal before moving the car. Riding the brake pedal (common on left foot applications) should be avoided when driving the car.

FRONT (DISC) BRAKE SHOE AND LINING REPLACEMENT REMOVAL

1. Remove the wheel and tire from the hub and rotor assembly. Be careful to avoid damage or interference with the bleeder screw fitting or transfer tube.

2. Remove the two bolts that attach brake shoe retaining clips shield (Fig. 3).

3. To facilitate removal and installation of the shoe and lining assemblies, the pistons must be pushed into their bores. Apply a steady inward pressure against each shoe and lining assembly toward its respective caliper housing on each side of the rotor (Fig. 4). Maintain the pressure for at least a minute. If the pistons will not go in easily, force them in with water pump pliers.

4. Grasp the metal flange on the outer end of the shoe with two pairs of pliers and pull the shoe out of the caliper (Fig. 9).

CLEANING AND INSPECTION

INSTALLATION

When new shoe and lining assemblies are being installed to replace worn linings it will be necessary to push the pistons all the way into the caliper bores. This will displace fluid from the caliper into the master cylinder reservoir. Check primary (front) brake system reservoir level and remove
3. Pump the brake pedal several times until a firm pedal is obtained and the shoe and lining assemblies are properly seated.
4. Install the wheel and tire on the hub and rotor assembly.
5. Check and refill the master cylinder reservoir with C6AZ-19542-A Extra Heavy Duty brake fluid (blue color) as required.
6. Road test the car.
 It should not be necessary to bleed the system after a shoe and lining replacement.

DISC BRAKE CALIPER ASSEMBLY

REMOVAL
1. Remove the front wheel cover. Remove the wheel and tire assembly from the hub and rotor assembly. Be careful to avoid damage or interference with the caliper splash shield, bleeder screw fitting or transfer tube.
2. Disconnect the steel brake line transfer tube from the caliper (Figs. 10 and 17). Leave the steel tube connected to the brake hose connector and bracket assembly.
3. Remove the two bolts retaining the brake hose bracket and caliper assembly to the spindle. Take care to avoid loosening the bridge bolts that hold the two halves of the caliper together.
4. Lift the caliper assembly off the rotor and place it on the bench.

INSTALLATION
1. Position the caliper assembly on the rotor, and mate the mounting bolt holes in the caliper with those of the spindle. It may be necessary to push the caliper pistons into the cylinder bores to obtain clearance between the shoe and lining assembly and the rotor. The shoe and lining assemblies should be seated properly on the bridges.
2. Install the caliper to spindle retaining bolts and torque them to specification. Check to insure that the rotor runs squarely and centrally between the two halves of the caliper. These should be approximately 0.090-0.120 inch clearance between the caliper and the rotor outside diameter (Fig. 4).
3. Position the brake hose bracket and caliper assembly to the spindle. Install the retaining bolts and torque them to specification.
4. Connect the front wheel steel transfer tube from the caliper to the front brake hose connector. Check the hose for proper installation (Fig. 17).
5. Bleed the brake system and centralize the differential valve as outlined in Part 2-1. Check the master cylinder fluid level and add the specified fluid, as required. Pump the brake pedal several times to actuate the piston seals and to position the shoe and lining assemblies.
6. Install the wheel and tire assembly and the wheel cover.
7. Road test the vehicle.
FRONT WHEEL HUB AND ROTOR ASSEMBLY

REMOVAL

1. Remove the wheel and tire from the hub and rotor assembly (Fig. 10). Be careful to avoid damage or interference with the caliper splash shield, bleeder screw fitting or transfer tube.

2. Remove the caliper assembly from the spindle and the rotor. If the caliper does not require servicing, it is not necessary to disconnect the brake hose or remove the caliper from the car. Position the caliper out of the way, and support it with a wire to avoid damaging the caliper or stretching the hose. Insert a clean cardboard spacer between the linings to prevent the pistons from coming out of the cylinder bores while the caliper is removed.

Handle the rotor and caliper assemblies in such a way as to avoid deformation of the rotor and nickel, scratching or contamination of the brake linings.

3. Remove the grease cap from the hub. Remove the cotter pin, nut lock, adjusting nut, and flat washer from the spindle. Remove the outer bearing cone and roller assembly.

4. Remove the hub and rotor assembly from the spindle.

INSTALLATION

1. If the rotor is being replaced, remove the protective coating from the new rotor with carburetor degreaser. Pack a new set of bearings with specified grease, and install the inner bearing cone and roller assembly in the inner cup. Pack grease lightly between the lips of a new grease retainer and install the retainer (Fig. 10).

If the original rotor is being installed, make sure that the grease in the hub is clean and adequate, that the inner bearing and grease retainer are lubricated and in good condition, and that the rotor braking surfaces are clean.

2. Install the hub and rotor assembly on the spindle.

3. Lubricate and install the outer wheel bearing, washer and adjusting nut.

4. Adjust the wheel bearings to specification, and then install the nut lock, cotter pin, and grease cap. The wheel bearing adjustment is especially important with disc brakes. Refer to Part 3-4 for specific instructions on adjusting wheel bearings with disc brakes.

5. Mount the caliper assembly on the spindle and torque the two mounting bolts to specification. If necessary, push the caliper pistons into the cylinder bores to obtain clearance between the shoe and lining assemblies and the rotor. Be sure that the shoe and lining assemblies are seated on the bridges. Check the flexible hose for correct routing.

6. Install the wheel and tire on the hub and rotor assembly.

DISC BRAKE ROTOR SPLASH SHIELD

REMOVAL

1. Remove the caliper and the hub and rotor assembly as outlined under Removal in the foregoing procedure.

2. Remove the three bolts that retain the splash shield to the spindle, and remove the shield (Fig. 10).

3. Remove the gasket.

INSTALLATION

1. Install the gasket.

2. If the shield is bent, straighten it out before installation. Position the shield to the spindle, install the retaining bolts, and torque to specification (Fig. 10).

3. Install the hub and rotor assembly and the caliper as outlined under Installation in the foregoing procedure.

PROPORTIONING VALVE

REMOVAL

1. Disconnect and remove the differential pressure valve - to - proportioning valve brake tube (Fig. 18).

2. Disconnect the front to rear brake tube from the proportioning valve.

3. Remove the bolt that attaches the proportioning valve to the frame and remove the valve (Fig. 17).

INSTALLATION

1. Install the proportioning valve on the frame. Position the valve to the apron so that the differential valve to proportioning valve brake tube is connected to the valve inlet stamped M and the front-to-rear brake tube is connected to the outlet stamped R. (Fig. 17). Install the retaining bolt and bracket.

2. Connect the front-to-rear brake tube to the valve (Fig. 18).

3. Position and connect the differential pressure valve - to - proportioning valve brake tube.

4. Bleed the brake system and centralize the differential valve. (Refer to Part 2-1, Section 2 for the correct procedure.)

BRAKE SHOE ADJUSTMENTS—REAR WHEELS

The vehicle should be raised with the wheels off the floor.

The rear hydraulic service brakes are self-adjusting and require a manual adjustment only after the brake shoes have been refitted, replaced, or when the length of the adjusting screw has been changed while performing some other service operation.

The manual adjustment is performed with the drums removed, using the tool and the procedure detailed below.

To adjust the brake shoes:

1. Using Rotunda Tool HRE 8650, (Fig. 11) determine the inside diameter of the drum braking surface.

2. Reverse the tool as shown in Fig. 11 and adjust the brake shoe diameter to fit the gauge. Hold the automatic adjusting lever out of engagement while rotating the adjustment screw, to prevent burring the screw slots. Make sure the adjusting screw rotates freely. If necessary, lubricate the adjusting screw threads with a thin, uniform coating of C1AZ-19590-B Grease.

3. Rotate Tool HRE 8650 around the brake shoes to be sure of the setting.

4. Apply a small quantity of high temperature grease to the points where the brake shoes contact the carrier plate, being careful not to get the lubricant on the linings.

5. Install the brake drum.

6. Install the three Timmerman nuts and tighten securely.

7. Install the wheel on the drum and tighten the mounting nuts to specification.

8. Complete the adjustment by making several sharp reverse stops with a forward stop before each.

9. Check the adjustment by making several stops while operating in a forward direction.

REAR BRAKE DRUM

REMOVAL

1. Raise the vehicle until the wheel and tire clear the floor.

2. Remove the wheel cover and wheel. Remove the three Timmerman nuts and remove the brake drum. If the brake drum will not come off easily, insert a narrow screwdriver through the brake adjusting hole in the carrier plate, and disengage the adjusting lever from the adjusting screw. While holding the adjusting lever away from the adjusting screw, back off the adjusting screw with the brake adjusting tool (Fig. 12). Back off the adjustment only if the drum cannot be removed. Be very careful not to burr, chip, or damage the notches in the adjusting screw; otherwise, the self-adjust-
2. Remove the adjusting spring and adjusting lever. Remove the primary shoe-to-anchor spring with the tool shown in Fig. 14. With the same tool, remove the secondary shoe-to-anchor spring and unhook the cable eye from the anchor pin.

3. Remove the anchor pin plate.

4. Remove the cable guide from the secondary shoe (Fig. 6).

5. Remove the shoe hold-down springs, shoes, adjusting screw, pivot nut, and socket.

6. Remove the parking brake link and spring. Disconnect the parking brake cable from the parking brake lever.

7. After removing the secondary shoe, disassemble the parking brake lever from the shoe by removing the retaining clip and spring washer (Fig. 6).

INSTALLATION

1. Before installing the brake shoes, back off the parking brake adjustment. Then assemble the parking brake lever to the secondary shoe and secure with the spring washer and retaining clip.

2. Apply a light coating of high-temperature grease at the points where the brake shoes contact the carrier plate.

3. Position the brake shoes on the carrier plate and secure the assembly with the hold-down springs. Install the parking brake link and spring. Connect the parking brake cable to the parking brake lever (Fig. 6).

4. Install the anchor pin plate on the anchor pin.

5. Place the cable eye over the anchor pin with the crimped side toward the carrier plate.

6. Install the cable guide on the secondary shoe web with the flanged hole properly fitted into the hole in the secondary shoe web. Thread the cable around the cable guide groove (Fig. 6). It is imperative that the cable be positioned in this groove and not between the guide and the shoe web.

7. Install the secondary shoe to anchor spring (Fig. 14).

8. Install the primary shoe to anchor spring with the tool shown in Fig. 14.

Be certain that the adjuster cable eye is not cocked or binding on the anchor pin when installed. All parts should be flat on the anchor pin. Remove the brake cylinder clamp.

9. Apply high-temperature grease to the threads and the socket end of the adjusting screw. Turn the adjusting screw into the adjusting pivot nut to the limit of the threads and then back off 1/2 turn.

REAR BRAKE SHOE REPLACEMENT

REMOVAL

1. Remove the wheel and the brake drum and install a clamp over the ends of the brake cylinder as shown in Fig. 13.
Interchanging the brake shoe adjusting screw assemblies from one side of the car to the other would cause the brake shoes to retract rather than expand each time the automatic adjusting mechanism operated. To prevent installation on the wrong side of the car, the socket end of the adjusting screw is stamped with an R or L (Fig. 15). The adjusting pivot nuts can be distinguished by the number of grooves machined around the body of the nut. Two grooves on the nut indicate a right thread, one groove indicates a left thread.

FIG. 14—Installing Retracting Spring

10. Place the adjusting socket on the screw and install this assembly between the shoe ends with the adjusting screw toothed wheel nearest the secondary shoe.

11. Hook the cable hook into the hole in the adjusting lever. The adjusting levers are stumped with an R or L to indicate their installation on a right or left brake assembly (Fig. 15).

12. Position the hooked end of the adjuster spring completely into the large hole in the primary shoe web. The last coil of the spring should be at the edge of the hole. Connect the loop end of the spring to the adjusting lever hole.

13. Pull the adjusting lever, cable and automatic adjuster spring down and toward the rear to engage the pivot hook in the large hole in the secondary shoe web (Fig. 6).

14. After installation, check the action of the adjuster by pulling the section of the cable between the cable guide and the anchor pin toward the secondary shoe web far enough to lift the lever past a tooth on the adjusting screw wheel. The lever should snap into position behind the next tooth, and release of the cable should cause the adjuster spring to return the lever to its original position. This return action of the lever will turn the adjusting screw one tooth.

If pulling the cable does not produce the action described, or if the lever action is sluggish instead of positive and sharp, check the position of the lever on the adjusting screw toothed wheel. With the brake in a vertical position (anchor at the top), the lever should contact the adjusting wheel 3/16 inch (plus or minus 1/32 inch) above the centerline of the screw. If the contact point is below this centerline, the lever will not lock on the teeth in the adjusting screw wheel, and the screw will not be turned as the lever is actuated by the cable.

To determine the cause of this condition:

A. Check the cable end fittings. The cable should completely fill or extend slightly beyond the cramped section of the fittings. If it does not meet this specification, possible damage is indicated and the cable assembly should be replaced.

B. Check the cable length. The cable should measure 11 1/8 inches (plus or minus 1/64 inch) from the end of the cable anchor to the end of the cable hook.

C. Check the cable guide for damage. The cable groove should be parallel to the shoe web, and the body of the guide should lie flat against the web. Replace the guide if it shows damage.

D. Check the pivot hook on the lever. The hook surfaces should be square with the body of the lever for proper pivoting. Replace the lever if the hook shows damage.

E. See that the adjusting screw socket is properly seated in the notch in the shoe web.

REAR WHEEL CYLINDER REPAIR

It is not necessary to remove the brake cylinder from the backing plate to disassemble, inspect, or hone and overhaul. Removal is necessary only when the cylinder is damaged or scored beyond repair.

DISASSEMBLY

1. Remove the links and the rubber boots from the ends of the brake cylinder. Remove the pistons, cups, and return spring from the cylinder bore (Fig. 16).

2. Remove the bleeder screw from the cylinder.

INSPECTION

1. Wash all parts in clean denatured alcohol. If alcohol is not available, use specified brake fluid. Dry with compressed air.

2. Check all internal parts for excessive wear or damage. If any of the internal parts require replacing, all should be replaced.

3. Inspect the cylinder bore for score marks or rust. If either condition is present, the cylinder bore must be honed. However, the cylinder should not be honed more than 0.003 inch beyond its original diameter.

4. Check the bleed hole to be sure that it is open.

ASSEMBLY

1. Apply a coating of heavy-duty brake fluid to all internal parts.

2. Thread the bleeder screw into the cylinder and tighten securely.

3. Insert the return spring, cups, and pistons into their respective positions in the cylinder bore (Fig. 16). Place a boot over each end of the cylinder.

REAR WHEEL CYLINDER REPLACEMENT

REMOVAL

1. With the wheel in a raised position, remove the wheel cover, wheel and drum.

2. Remove the brake shoe assemblies, following procedures outlined in this section.

3. Disconnect the brake line from the brake cylinder. Be sure the engine is stopped and there is no vacuum in the booster system before disconnecting the hydraulic lines.

4. Unscrew the tube fitting that connects the tube to the cylinder. Do not pull the metal tube away from the cylinder. Pulling the tube out of the cylinder connection will bend the metal tube and make installation difficult. The tube will separate from the cylinder when the cylinder is removed from the carrier plate.

4. Remove the brake cylinder attaching bolts and lock washers and remove the cylinder.

INSTALLATION

Wipe the end(s) of the hydraulic line to remove any foreign matter before making connections.

1. Place the rear wheel cylinder into position. Enter the tubing into the cy-
linder, and start the tube fitting nut into the threads of the cylinder.
2. Secure the cylinder to the carrier plate by installing the attaching bolts and lock washers.
3. Tighten the tube fitting nut to specification with Milbar tool 1112-144 or its equivalent.
4. Install the links in the ends of the brake cylinder, install the shoe and adjuster assemblies, and adjust the shoes as outlined in this section.
5. Install the brake drum, wheel and cover. Bleed the brakes and centralize the differential valve as outlined in Part 2-1, Section 2.

REAR BRAKE BACKING PLATE REPLACEMENT

REMOVAL
1. Remove the wheel cover, wheel and brake drum. Disconnect the brake line from the brake cylinder.
2. Remove the brake shoe and adjuster assemblies and the wheel cylinder as outlined in this section. On the rear wheel, disconnect the parking brake lever from the cable.
3. Rotate the axle shaft so that the hole in the axle shaft flange lines up with the backing plate attaching nuts and remove the nuts. Pull the axle shaft assembly out of the housing with tool 4235C and a slide hammer (Part 4-2).
4. Be careful not to damage the axle seal by allowing the shaft to slide across it. Then remove the backing plate.

INSTALLATION
1. Position a new rear backing plate on the attaching bolts in the axle housing flange. Insert the axle shaft into the housing so that the splines engage the differential side gear with the bearing retainer sliding onto the attaching bolts and against the backing plate. Install the attaching nuts through the access hole in the axle shaft flange.
2. Install the wheel cylinder and connect the brake line as outlined in this section.
3. Install the brake shoe and adjuster assemblies as outlined in this section. Connect the parking brake cable to the lever. Install the brake drum and wheel.
4. Adjust the brake shoes (Section 2). Bleed the brake system and centralize the differential valve as outlined in Part 2-1, Section 2.

HYDRAULIC LINES
Steel tubing is used throughout the brake system with the exception of the flexible hoses at the front wheels and at the rear axle housing brake tube connector (Fig. 17).

BRAKE TUBE REPLACEMENT
If a section of the brake tubing becomes damaged, the entire section should be replaced with tubing of the same type, size, shape, and length. Copper tubing must not be used in a hydraulic system. When bending brake tubing to fit underbody or rear axle contours, be careful not to kink or crack the tube.

All brake tubing should be double flared properly to provide good leak-proof connections. Clean the brake tubing by flushing with clean brake fluid before installation.
When connecting a tube to a hose, tube connector, disc caliper, or brake cylinder, tighten the tube fitting nut to the specified torque with Milbar tool 112-144 or equivalent.

BRAKE HOSE REPLACEMENT
Refer to Fig. 17 for an illustration of the brake system.
A flexible brake hose should be replaced if it shows signs of softening, cracking, or other damage.
A properly installed brake hose should have clearance to all components during front and rear suspension bounce, rebound and full inside and outside turns.

FRONT BRAKE HOSE — DISC BRAKES

Removal
1. Open the hood. Raise the vehicle on a hoist.
2. Remove the front wheel cover. Remove the front wheel and tire as an assembly.
3. Disconnect the front brake hose at the brake line and remove the clip retaining the brake hose to the bracket. Remove the brake hose from the bracket.
4. Remove the bolt retaining the brake hose bracket and caliper assembly to the spindle, and remove the brake hose bracket.
5. Disconnect the steel tube from the caliper and brake hose connector. Remove the brake hose and bracket assembly.

Installation
1. Position the brake hose bracket to the spindle, and install and torque the bracket and caliper retaining bolts to specification.
2. Connect the caliper steel line to the hose connector, and caliper. Torque to specification.
3. Position the brake hose to the bracket on the frame side rail; making sure the stripe on the hose is straight to prevent twisted hose. Install the clip, and connect the brake line to the hose and torque it to specification.
4. Bleed the front brake system and centralize the differential valve (Part 2-1, Section 2).
5. Install the wheel and tire assembly. Install the front wheel cover.
6. Lower the vehicle and close the hood.

REAR BRAKE HOSE

Removal
1. Raise the vehicle.
2. Disconnect the rear brake hose at the steel tubing.
3. Remove the clip retaining the brake hose to the bracket.
4. Disconnect the two steel tubes at the rear brake hose connector.
5. Remove the connector bracket to rear axle housing retaining bolt.

Installation
1. Position the hose, connector and bracket assembly at the axle and install the connector bracket retaining bolt. Tighten the retaining bolt.
2. Connect the two steel tubes to the brake connector and tighten the retaining nuts to specifications.

FIG. 16—Rear Brake Wheel Cylinder
3. Position the rear brake hose in the bracket and install the retaining-clip. The hose should be installed so that it does not touch the muffler outlet pipe or shock absorber.

4. Connect the steel tube to the hose and tighten the nut to specification.

5. Bleed the rear brake hydraulic system and centralize the differential valve (Part 2-1, Section 2).

6. Lower the vehicle and close the hood.

3 REMOVAL AND INSTALLATION

DUAL-MASTER CYLINDER
POWER BRAKES

REMOVAL

1. Remove the brake tubes from the primary and secondary outlet ports of the master cylinder.

2. Remove the two nuts and two lock washers attaching the master cylinder to the brake booster assembly.

3. Slide the master cylinder forward and upward from the vehicle.

INSTALLATION

1. Before installing the master cylinder, check the distance from the outer end of the booster assembly push rod to the master cylinder mounting surface. Turn the push rod adjusting screw in or out as required to obtain the specified length (Refer to Figs. 6 and 7, Part 2-1, Section 2).

2. Position the master cylinder assembly over the booster push rod and onto the two studs on the booster assembly.

3. Install the attaching nuts and lock washers and torque them to specification.

4. Install the front and rear brake tubes to the master cylinder outlet fittings. Torque the nuts to specification.

5. Fill the master cylinder with the specified brake fluid to within 1/4 to 1/2 inch of the top of the dual reservoirs. Use Rotunda Brake Fluid — Extra Heavy Duty — Part Number C6AZ-19542-A (ESA-M6C25-A) for disc brake applications. The disc brake system fluid is colored blue for identification. Do not mix low temperature brake fluids with the specified fluid for the disc brake system.

6. Properly seat the cover gasket and install the filler cap.

7. Loosen the bleed screw on the side of the master cylinder, bleed the dual-master cylinder, allowing the air to escape at the master cylinder bleed-screw; then, tighten the bleed-screw.

8. Refill the master cylinder and bleed the front wheel brake cylinders first, then bleed the rear wheel brake cylinders. Centralize the differential valve.

9. Fill the dual-master cylinder within 1/4 to 1/2 inch of the top of the master cylinder reservoirs.

10. Install the filler cap and gasket.

11. Operate the brakes several times, then check for external hydraulic system leaks.

PRESSURE DIFFERENTIAL VALVE ASSEMBLY

Refer to Figs. 17 and 18.

REMOVAL

1. Disconnect the brake warning light wire from the pressure differential valve assembly switch. To prevent damage to the brake warning switch wire connector, expand the plastic lugs to allow removal of the shell-wire connector from the switch body.

2. Loosen the tube nut connecting the primary (front brake) system inlet tube at the top of the pressure differential valve assembly and disconnect the tube.

3. Disconnect the primary system left front brake outlet tube from the top side of the pressure differential valve assembly.

4. Disconnect the primary system right front brake outlet tube from the top side of the differential valve assembly.

5. Disconnect the secondary (rear brake) system inlet tube at the lower side of the pressure differential valve assembly.

6. Disconnect the secondary system rear brake outlet tube from the lower side pressure differential valve assembly.

7. Remove the screw retaining the pressure differential valve assembly to the frame side rail and remove the valve assembly.

8. If the differential valve is to be replaced, remove the brake warning lamp switch and install the switch in the new differential valve. The pressure differential valve assembly and the brake warning lamp switch are separate units and each is serviced as a separate assembly only.

9. Remove front wheel covers. Remove front wheel and tire assemblies.
INSTALLATION

1. Mount the pressure differential valve assembly on the frame side rail and tighten the attaching screw.
2. Connect the rear brake system inlet tube to the pressure differential valve assembly and tighten the tube nut to the specified torque (Refer to Part 2-3).
3. Connect the rear brake system outlet tube to the pressure differential valve assembly. Tighten the tube nut to the specified torque.
4. Connect the front brake system inlet tube to the pressure differential valve assembly and tighten the tube nut to the specified torque.
5. Connect the right front brake outlet tube to the pressure differential valve assembly. Tighten the tube nut to the specified torque.
6. Connect the left front brake outlet tube to the pressure differential valve assembly. Tighten the tube nut to the specified torque.
7. Connect the shell-wire connector to the brake warning lamp switch. Make sure the plastic lugs on the connector hold the connector securely to the switch.
8. Bleed the brakes and centralize the pressure differential valve.
9. Install front wheel and tire assemblies, and torque the retaining nuts to specification. Install wheel covers.

BRAKE BOOSTER

REMOVAL

Refer to Fig. 18.
1. Disconnect the vacuum hose from the booster.
2. Remove the attaching nuts, and remove the master cylinder from the booster. It is not necessary to disconnect the brake lines, but care should be taken that the brake lines are not deformed. Permanent deformation of brake lines can lead to tube failure.
3. Working inside the vehicle below the instrument panel, disconnect the booster push rod link from the brake pedal assembly. To do this, proceed as follows:
 4. Disconnect the stop light switch wires at the connector. Remove the hairpin retainer. Slide the stop light switch off from the brake pedal just far enough for the switch outer hole to clear the pin, and then lift the switch straight upward from the pin. Slide the master cylinder push rod and the nylon washer and bushing off from the brake pedal pin (Fig. 18).
5. Remove the four bracket-to-dash panel attaching nuts.
 6. Remove the booster and bracket assembly from the dash panel, sliding the push rod link out from the engine side of the dash panel (Fig. 18).
7. Remove the dust seal from the booster push rod link and position it in the slot in the dash panel for installation.

INSTALLATION

1. Position the new booster (if required) with the four mounting studs entering the holes in the dash panel. If a binding condition occurs when a new booster is installed, it may be necessary to file the holes in the dash panel slightly to align with the studs. Do not file more than necessary.
2. Working from the passenger compartment, install four booster attaching nuts on the studs protruding through the dash panel. Do not tighten the nuts. Install the dust seal.
3. Working inside the vehicle below the instrument panel, connect the booster push rod link to the brake pedal assembly. To do this, proceed as follows:
 4. Install the inner nylon washer, the master cylinder push rod, and the bushing on the brake pedal pin. Position the switch so that it straddles the push rod with the switch slot on the pedal pin and the switch outer hole just clearing the pin. Slide the switch completely onto the pin. Install the outer nylon washer as shown in Fig. 18. Secure these parts to the pin with the hairpin retainer. Connect the stop light switch wires to the connector, and install the wires in the retaining clip.
 5. Tighten and torque the booster attaching nuts to specification. Before installing the master cylinder, check the distance from the outer end of the booster assembly push rod to the master cylinder surface. Turn the push rod adjusting screw in or out as required to obtain the specified length. (Refer to Part 2-1, Section 2, Figs. 6 and 7).
5. Position the master cylinder to the booster, install the attaching nuts, and torque them to specification.
6. Connect the vacuum hoses to the booster.
7. Start the engine and check the booster master cylinder, brakes and stop lights for proper operation.

BRAKE PEDAL

REMOVAL

1. Loosen the booster mounting nuts.
2. Disconnect the stop light switch wires at the connector.
3. Remove the hairpin retainer. Slide the stop light switch off from the brake pedal pin just far enough for
the switch outer hole to clear the pin, and then lift the switch straight upward from the pin. Slide the master cylinder push rod and the nylon washers and bushing off from the brake pedal pin (Fig. 18).
4. Remove the pivot bolt and nut that holds the pedal to the pedal support bracket. Remove the brake pedal assembly from the pedal support bracket, and remove the bushings.

INSTALLATIONS

1. Apply a coating of SAE 10 engine oil to the bushings and locate all the bushings in their proper places on the pedal assembly (Fig. 18).
2. Install the brake pedal assembly and bushings to the support bracket, and then install the pivot bolt through the support bracket and brake pedal assembly. Install the pivot bolt nut and torque to specification.
3. Install the inner nylon washer, the master cylinder push rod, and the bushing on the brake pedal pin. Position the switch so that it straddles the push rod with the switch slot on the pedal pin and the switch outer hole just clearing the pin. Slide the switch completely onto the pin, install the outer nylon washer as shown in Fig. 18. Secure these parts to the pin with the hairpin retainer.
4. Connect the stop light switch wires to the connector, and install the wires in the retaining clip.
5. Torque the booster mounting nuts to specifications.

PARKING BRAKE CONTROL ASSEMBLY

REMOVAL

Refer to Figure 19.
1. Remove the two nuts attaching the control assembly to the dash panel.
2. Remove the bolt attaching the control assembly to the side cowl bracket.
3. Disconnect the hose to the parking brake vacuum power unit.
4. Remove the cable retainer clip from the cable end and disconnect the cable from the control.
5. Remove the control assembly from the vehicle.

INSTALLATION

1. Position the control in the approximate final position.
2. Fit the cable through its mounting hole and install the retaining clip.
3. Connect the vacuum hose to the parking brake power unit.
4. Install the attaching bolt to the side cowl bracket. Do not tighten.
5. Install the two attaching nuts on the control assembly bracket on the engine side of the dash panel.
6. Torque all nuts and bolts to specifications.
7. Adjust parking brake cable tension, and check operation, as outlined in Part 2-1, Section 2.

PARKING BRAKE VACUUM POWER UNIT

REMOVAL

1. Remove the parking brake control assembly from the vehicle as described under removal in the foregoing procedures.
2. Drill out or grind off the two rivets that return the vacuum power unit to the parking brake control assembly.
3. Drill out or grind off the rivet that connects the vacuum piston link to the release lever, and remove the power unit.

INSTALLATION

1. Position the vacuum power unit on the parking brake control assembly and secure with two round head bolts and nuts.
2. Connect the vacuum piston link to the release lever with a shoulder bolt nut and wave washer. The wave washer is to be positioned on the shoulder bolt between the vacuum piston link and the release lever. The link and release lever must pivot freely.
3. Install the parking brake control assembly in the vehicle as described under Installation in the foregoing procedure.
4. Test the lock and automatic release operations of the parking brake control assembly with the engine running in all the transmission selector lever positions. With the engine running, the parking brake should remain engaged in neutral or park and should release in any drive position.

PARKING BRAKE ACTUATOR-TO-CONTROL ASSEMBLY CABLE

REMOVAL

Refer to Figure 19.
1. Inside the passenger compartment, remove the retaining clip from the control cable and remove the cable from the control assembly.
2. Raise the vehicle on a hoist.
3. Remove the six attaching bolts attaching the splash shield and move the shield aside to gain access to the cable.
4. Remove the return spring from the actuator assembly.
5. Disconnect the control cable from the actuator.
6. Remove the retaining clip from the cable housing at the frame.
7. Work the cable free and remove it from the vehicle.

INSTALLATION

1. Work the new cable through the frame and body openings and position it in the approximate final position.
2. Position the cable housing at the frame opening and install the retaining clip.
3. Lower the vehicle to a convenient level to work in the passenger compartment.
4. Insert the cable in the control assembly and install the retaining clip.
5. Raise the vehicle fully.
6. Connect the cable end to the actuator.
7. Install the return spring to the actuator.
8. Position the splash shield and install the six attaching bolts. Torque to specifications.
9. Adjust parking brake cable tension and check operation as outlined in Part 2-1, Section 2.
10. Lower the vehicle and replace any floor mat, kick pads or ductwork that might have been displaced.

PARKING BRAKE EQUALIZER-TO-REAR WHEEL CABLE

REMOVAL

1. Raise the vehicle. Remove the rear wheel cover. Remove the wheel and tire as an assembly.
2. Remove the three Tinnerman nuts that hold the brake drum in place, and remove the drum.
3. Remove the brake shoe retracting springs.
4. Loosen the equalizer rod adjusting nut and disconnect the cable from the equalizer (Fig. 19).
5. Remove the retaining clip that secures the cable housing to the frame bracket, and pull the cable and housing out of the bracket.
6. Remove the cable clamp attaching nuts and the clamp.
7. Working on the wheel side of the backing plate (Fig. 19), compress the prongs on the cable retaining so that it can pass through the hole in the backing plate. Draw the cable retaining out of the hole.
8. With the spring tension off the parking brake lever, lift the cable out of the slot in the lever and remove it through the backing plate hole.

INSTALLATION

1. Pull enough of the cable through the backing plate so that the end of the cable may be inserted through the backing plate hole from the inner side and engage the cable end with the slot in the parking brake lever.
2. Pull the excess slack from the cable and insert the cable housing into the backing plate access hole so that the retaining prongs expand (Fig. 19). The prongs must be securely locked in place.
3. Install the brake shoe retracting springs.
4. Position the cable to the frame and install the retaining clamp so that the cable conduit armor extends forward of the clamp. Install the clamp attaching screws.
5. Engage the forward end of the cable housing with the frame bracket and secure it with the clip.
6. Insert the ball end of the cable into the equalizer.
7. Make a preliminary brake adjustment with the use of Tool HRA-8650 (Fig. 11).
8. Install the rear drum. Tighten the three Tinnerman nuts that secure the drum. Install the wheel and wheel cover.
9. Adjust the parking brake linkage as outlined in Part 2-1, Section 2.
10. Lower the vehicle.
11. Adjust the rear brakes (Part 2-2, Section 2).

PARKING BRAKE ACTUATOR-TO-EQUALIZER CABLE

Refer to Part 2-1, Section 2, Figure 5 and this Part, Figure 19.

REMOVAL

1. Raise the vehicle on a hoist.
2. Remove the adjusting nut which retains the cable to the equalizer.
3. Remove the cable end from the equalizer.
4. Unhook the cable from the actuator, and remove from the vehicle.

INSTALLATION

1. Insert new cable end into actuator.
2. Insert cable end into equalizer and tighten the adjusting nut snug.
3. Adjust the parking brake cable tension and check operation as outlined in Part 2-1, Section 2.
4. Lower the vehicle.
FIG. 19—Parking Brake System
MAJOR REPAIR OPERATIONS

REAR BRAKE DRUM REFINISHING

Minor scores on a brake drum can be removed with a fine emery cloth. A drum that is excessively scored or shows a total indicator runout of over 0.007 inch should be turned down. Remove only enough stock to eliminate the scores and true up the drum. The refinished diameter must not exceed 0.060 inch oversize (11.090 inches).

If the drum diameter is less than 0.030 inch oversize (11.060 inches) after refinishings, standard lining may be installed. If the drum diameter is 11.060 - 11.090 inches, oversize linings must be installed.

After a drum is turned down, wipe the refinished surface with a cloth soaked in denatured alcohol. If one drum is turned down, the opposite drum on the same axle should also be cut down to the same size.

ROTOR REFINISHING

Rotunda Disc Brake Attachment, FRE-2249-2, is the only approved tool to be used to refinish the disc brake rotors. The step-by-step resurfacing procedure provided with the tool must be adhered to.

2. Check the inside diameter of the brake drum with a brake drum micrometer (Tool FRE-1431). If the diameter is less than 11.060 inches, standard linings may be installed. If the diameter is 11.060 - 11.090 inches, oversize lining should be installed.

3. Position the new lining on the shoe. Starting in the center, insert and secure the rivets, working alternately towards each end. Install all parts supplied in the kit. Ford replacement linings are ground and no further grinding is required.

4. Check the clearance between the shoe and lining. The lining must seat tightly against the shoe with not more than 0.008 inch clearance between any two rivets.

DUAL MASTER CYLINDER DISASSEMBLY

1. Clean the outside of the master cylinder and remove the filler cap and gasket. Pour out any brake fluid that remains in the cylinder.

2. Remove the secondary piston stop bolt from the bottom of the cylinder (Fig. 20).

3. Remove the bleed screw, if required.

4. Remove the snap ring (Fig. 21) from the retaining groove at the rear of the master cylinder bore and remove the primary piston assembly from the master cylinder bore. Do not remove the screw that retains the primary return spring retainer, return spring, pumping cup retainer, primary cup and protector on the primary piston. This assembly is factory pre-adjusted and should not be disassembled.

FIG. 21 — Removing Snap Ring— Typical

FIG. 20 — Dual Master Cylinder — Disassembled
GROUP 2—Brakes

The finished braking surfaces of the rotor must be flat and parallel within 0.0007 inch; lateral runout must not exceed 0.002 inch total indicator reading, and the surface finish of the braking surfaces are to be 85/15 micro inches. The minimum limiting dimensions (Fig. 9, Part 2-1) from the inboard bearing cup to the outboard rotor face (dimension A) and from the inboard bearing cup to the inboard rotor face (dimension B) must be observed when removing material from the rotor braking surfaces.

REAR BRAKE SHOE RELINING

Brake linings that are worn to within 1/32 inch of the rivet or have been saturated with grease or oil must be replaced. Failure to replace worn linings will result in a scored drum. When it is necessary to replace linings, they must also be replaced on the wheel on the opposite side of the vehicle.

Inspect brake shoes for distortion, cracks, or looseness. If this condition exists, the shoe should be discarded. Do not repair a defective brake shoe.

1. Wash the brake shoes thoroughly in a clean solvent. Remove all burrs or rough spots from the shoes.
2. Remove the secondary piston, pumping cups protector, brake master cylinder primary cup, pumping cup retainer and secondary piston return spring. Do not remove the outlet tube seats, outlet check valves and outlet check valve springs.

INSPECTION AND REPAIR

1. Clean all parts in clean denatured alcohol and inspect the parts for chipping, excessive wear or damage. Replace them, as required. When using a master cylinder repair kit, install all the parts supplied.
2. Check all recesses openings and internal passages to be sure they are open and free of foreign matter. Use the air hose to blow out dirt and cleaning solvent. Place all parts on a clean pan or paper.
3. Inspect the hydraulic hydraulic master cylinder bore for signs of etching, pitting, scoring or rust. If it is necessary to hone the master cylinder bore to repair damage, do not exceed allowable hone specifications.

ASSEMBLY

1. Dip all parts except the master cylinder body in the specified, clean Rotunda Brake Fluid.
2. Install the seal and pumping cup on the secondary piston (Fig. 20). Install the protector and brake master cylinder primary cup on the secondary piston; then, install the pumping cup retainer and secondary piston return spring on the secondary piston.
3. Carefully insert the complete secondary piston and return spring assembly in the master cylinder bore.
4. Install the primary piston and return spring assembly in the master cylinder bore.
5. Install the snap ring in the cylinder bore groove (Fig. 21).
6. Install the secondary piston stop bolt in the bottom of the master cylinder.
7. Install the bleed screw. Install the filler cap gasket. Position the gasket as shown in Fig. 20. Make sure the gasket is properly seated.

DISC BRAKE CALIPER

DISASSEMBLY

Do not remove the bridge bolts that hold the two halves of the caliper together. The two caliper housings are shown separated in Fig. 22 for illustration purposes only.

1. Remove the caliper assembly from the car as outlined in Section 2.
2. Remove the two attaching bolts and the caliper splash shield (Fig. 22).
3. Remove the two shoe and lining assemblies.
4. Remove the flexible brake hose from the caliper.

FIG. 22—Caliper Assembly—Disassembled

FIG. 23—Removing or Installing Pistons

5. Remove the external transfer tube.
6. Clamp the caliper in a vise and secure it by the mounting flanges on the inboard housing (Fig. 23).
7. Remove the four pistons from the cylinder bores with the special tool shown in Fig. 23. The caliper pistons must be removed prior to removal of the dust boot. As the piston is withdrawn from the caliper, spread the dust boot back over the piston. To prevent cocking with consequent damage
to the piston or bore, rotate the piston with the tool while pulling it outward at the same time. Be careful to avoid scratching or damaging the outside diameter surface or dust boot. Such damage causes poor sealing.

If a piston is so completely seized in the cylinder bore that it cannot be removed with the special tool, force the cylinder out of the bore by positioning two screwdrivers in the piston dust boot retaining groove and prying outward. To prevent cocking, tap the end of the piston lightly around the circumference with a hammer, while the prying force is being applied. Be careful to avoid damaging the dust boot retainer in the caliper housing (Fig. 22). If this method of removal is used, the pistons must be replaced.

Remove the dust boots from the caliper assembly.

9. Remove the rubber piston seals from the grooves in the cylinder bores by carefully inserting the point of a small knife or other pointed instrument under the seal and raising the seal up far enough to be pulled out with the fingers.

CLEANING AND INSPECTION

Clean all metal parts with alcohol or a suitable solvent (Fig. 22). Use clean, dry, compressed air to clean out and dry the grooves and passage ways. Be sure that the caliper bore and component parts are completely free of any foreign material.

Check the cylinder bores and pistons for damage or excessive wear. Replace the piston if it is pitted, scored, or the chrome plating is worn off.

ASSEMBLY

1. Clamp the caliper in a vise and secure it by the mounting flange on the inboard housing.

2. The new caliper seals must be flat round and not twisted when setting freely on a clean surface. Discard any new seals that have been deformed in shipping or storage. Installation of deformed seals may result in seal leakage.

3. Apply a film of clean brake fluid to new caliper piston seals and install them in the grooves of the cylinder bore. The seal should be positioned at one area in the groove and gently worked around. Do not re-use the original seals.

4. Install the new dust boots by seating the boot flange in the outer caliper bore groove. Position in one area and gently work around until fully seated. Do not reuse the old dust boots.

5. Coat the outside diameter of the pistons with brake fluid and install them in the cylinder bores so that the open end of the piston and the boot retaining groove face out of the bore. Spread the dust boot over the piston as the piston is being installed. To avoid cocking, locate the piston squarely in the bore and apply a slow steady pressure. If a piston will not easily go all the way into the bore, remove it and thoroughly inspect the cylinder bore, the piston seal and the installation of the seal. If the piston still will not go in with bore in good condition and the piston seal properly installed, use the tool shown in Fig. 23. Rotate the piston with the tool while pushing it inward at the same time. Seat the dust boots carefully in the piston groove, be sure that each boot is fully seated in their groove.

6. Install the external transfer tube.

7. Install the flexible brake hose to the caliper.

8. Install the caliper assembly on the spindle, and install the shoe and lining assemblies and the splash shield as outlined in Section 2. Check the caliper for fluid leaks under maximum pedal pressures. Do not move the car until a firm brake pedal is obtained.
PART 2-3—Specifications

DRUM BRAKE DIMENSIONS—INCHES

<table>
<thead>
<tr>
<th>Drum Inside Diameter</th>
<th>Drum Maximum Boring Limit</th>
<th>LINING LENGTH</th>
<th>LINING WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary</td>
<td>Secondary</td>
</tr>
<tr>
<td>11.030</td>
<td>11.090</td>
<td>9.30</td>
<td>11.92</td>
</tr>
</tbody>
</table>

BRAKE CHECKS AND ADJUSTMENTS—INCHES

<table>
<thead>
<tr>
<th>Type of Check or Adjustment</th>
<th>Specification</th>
</tr>
</thead>
</table>
| Brake Shoe Repair | Drum Diameter: 11.030–11.060 Standard
 | 11.060–11.090 Oversize |
| Pedal Free Height — Min. | 5 1/4 Max. to 4 11/32 from dash panel bare metal |
| Pedal Total Travel | 2.340 |
| Master Cylinder | Hydraulic Master Cylinder Bore Maximum Honed Diameter — 1.003 |
| Power Unit | Push Rod Adjustment — 0.980–0.995 |
| Drum Out-of-Round | Refinish if Total Indicator Runout Exceeds 0.007 |
| Self-Adjustment Cable Length| End of Cable Anchor to End of Cable Hook — 11 1/8 ± 1/64 |
| Rotor Runout | 0.002 Total Lateral Runout |
| Rotor Thickness | 1.250 |
| Rotor Outside Dia. | 11.960 |
| Rotor Inside Dia. | 7.785 |
| Caliper Cylinder Bore Dia. | 1.938 |

1. The following requirements must be met when resurfacing disc brake rotors:
 - Rotunda Disc Brake Attachment FRE-2249-2 is the only approved tool to be used to refinish the disc brake rotors. The step-by-step resurfacing procedure provided with the tool must be adhered to.
 - The finished braking surfaces of the rotor must be flat and parallel within 0.0007 inch; lateral runout must not exceed 0.002 inch total indicator reading, and the surface finish of the braking surfaces are to be 85/15 micro inches. The minimum limiting dimensions of 0.395 inch from the inboard bearing cup to the outboard rotor face and 0.755 inch from the inboard bearing cup to the inboard rotor face must be observed when removing material from the rotor braking surfaces.
 - Dimension to be measured parallel to the vertical centerline of the steering column with a 50 pound load applied to the centerline of the brake pedal pad.

DISC BRAKE SHOE AND LINING DIMENSIONS (INCHES)

<table>
<thead>
<tr>
<th>Lining Material</th>
<th>Bonded FoMoCo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lining Size</td>
<td>5.36 x 1.90</td>
</tr>
<tr>
<td>Lining Area</td>
<td>10.03 Sq. In./segment</td>
</tr>
<tr>
<td>Shoe and Lining Thickness</td>
<td>0.600 nominal</td>
</tr>
<tr>
<td>Lining Thickness</td>
<td>0.436 nominal</td>
</tr>
<tr>
<td>Shoe and Lining Maximum Wear Limit</td>
<td>0.231</td>
</tr>
<tr>
<td>Lining Maximum Wear Limit (from front surface of shoe)</td>
<td>0.066</td>
</tr>
</tbody>
</table>
TORQUE LIMITS (FT-LBS)

<table>
<thead>
<tr>
<th>Description</th>
<th>Ft-Lbs</th>
<th>Description</th>
<th>Ft-Lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Brake Control Assembly Mounting Bolt</td>
<td>15-19</td>
<td>Hub and Rotor Assembly to Front Wheel Spindle</td>
<td>Rotate rotor while torquing to 17-25 ft-lbs. Back off the adjusting nut 1/2 turn and retighten to 10-15 inch pounds while rotating wheel. Selectively position nut retainer on adjusting nut so that a set of slots are in line with cotter pin hole. Adjusting nut should not be rotated in this operation. Lock adjusting nut and nut retainer with cotter pin so that the cotter pin end does not interfere with seating of wheel static collector in spindle hole.</td>
</tr>
<tr>
<td>Wheel Cylinder Bleeder Screw</td>
<td>50 ½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Pedal Support Bracket to Instrument Panel</td>
<td>9-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel to Hub and Drum Nuts – 5 Lug</td>
<td>70-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master Cylinder to Booster Body</td>
<td>18-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Booster to Dash</td>
<td>18-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drum to Axle Shaft Speed Nut</td>
<td>Hand Push Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Cylinder to Brake Backing Plate Bolt</td>
<td>15-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Backing Plate to Axle Housing</td>
<td>30-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Line Connection to Axle Housing Bolt</td>
<td>12-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line Connection–Nut Sizes (2)</td>
<td>3/8-24</td>
<td>8-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/16-24</td>
<td>10-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2-20</td>
<td>12-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/16-18</td>
<td>15-25</td>
<td></td>
</tr>
<tr>
<td>Caliper Assembly to Spindle</td>
<td>120-130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caliper Bleeder Screw (Must be Leakproof)</td>
<td>10 Max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caliper Brake Shoe Clips</td>
<td>7-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caliper Bridge Bolts</td>
<td>75-105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor Splash Shield to Spindle</td>
<td>9-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel Assembly to Front Wheel Hub and Rotor Assembly</td>
<td>75-115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D In-lbs. Max.

1 All hydraulic line connections (nuts) must be torqued the specified value and free of fluid leakage.

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Ford Tool No.</th>
<th>Former No.</th>
<th>Description</th>
<th>Ford Tool No.</th>
<th>Former No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotunda HRE-8650</td>
<td></td>
<td>Brake Adjusting Gauge</td>
<td>TOOL-33621</td>
<td>33621</td>
<td>Internal Snap Ring Pliers</td>
</tr>
<tr>
<td>–</td>
<td>LM-119</td>
<td>Brake Cylinder Retaining Clamp</td>
<td>–</td>
<td></td>
<td>Milbar</td>
</tr>
<tr>
<td>–</td>
<td>2018-A</td>
<td>Brake Adjusting Tool</td>
<td>–</td>
<td>1112-144</td>
<td>Inch-lb torque wrench</td>
</tr>
<tr>
<td>–</td>
<td>2162</td>
<td>Adapter Cap</td>
<td>TOOL-4235-C</td>
<td>4235-C</td>
<td>Axle Shaft Remover</td>
</tr>
<tr>
<td>–</td>
<td>2035-N</td>
<td>Brake Shoe R & R Spring</td>
<td>Rotunda HRE-1431</td>
<td>–</td>
<td>Brake Drum Micrometer</td>
</tr>
</tbody>
</table>
PART 3-1— Suspension, Steering, Wheels and Tires—General Service

1 DIAGNOSIS AND TESTING

STEERING

Figures 12 and 13 lists various steering trouble symptoms and possible causes. Several of these symptoms are also common to suspension, frame, and wheel and tire troubles. For this reason, be sure that the cause of the trouble is in the steering gear or linkage before adjusting, repairing, or replacing any of the steering parts.

STEERING PRELIMINARY CHECKS

The following preliminary checks should always be made before performing any trouble-diagnosis operations.

Air Bleeding

Air in the power steering system (shown by bubbles in the fluid) should be bled. After making sure that the reservoir is filled to specification (the fluid must be at normal operating temperature when the check is made), turn the steering wheel through its full travel three or four times. Do not hold the wheels against their stops for more than 5 seconds. Recheck the fluid level.

Check Pump Belt

If the pump belt is broken, glazed or worn, replace it with a new belt. Use only the specified type of belt. Refer to Part 3-3 for belt adjustment.

Check For Fluid Leaks

With the engine idling, turn the steering wheel from stop to stop several times. Check all possible leakage points. Tighten all loose fittings, and replace any damaged lines or defective seats.

Check Turning Effort

With the front wheels properly aligned and tire pressures correct, check the effort required to turn the steering wheel.

1. With the vehicle on dry concrete, set the parking brakes.
2. With the engine warmed up and running at idle speed, turn the steering wheel to the left and right several times to warm the fluid.

3. Attach a pull scale to the rim of the steering wheel. Measure the pull required to turn the wheel one complete revolution in each direction. The effort required to rotate the steering wheel should not exceed 5.0 pounds.

Pump-Fluid Pressure Test

A fluid pressure test will show whether the pump or some other unit in the power steering system is causing trouble in the system. Steps outlined below should be followed to determine the cause of the trouble.

1. Measure the pump belt tension. When adjusting the belt tension on the power pump, do not pry against the pump to obtain the proper belt load.

A pry bar should be placed between a half-inch cast boss on the front face of the pump cover plate and cast boss on the pump mounting bracket to obtain the proper belt tension.

2. Disconnect the pressure line hose from the pump outlet, and install a 0-2000 psi pressure gauge (Tool T56L-33610-D) and the shut off valve between the end of the hose and the pump outlet (Fig. 1).

Be sure that the pressure gauge is between the pump and the shut off valve, all connections are tight, and the shut off valve is fully open.

3. Connect a tachometer to the engine.

4. Start the engine and operate it at idle speed for at least two (2) minutes to warm up the fluid to 160°-180°F.

5. Cycle the steering wheel from stop-to-stop several times to expel any air from the system; stop the engine. Remove the reservoir filler cap and check the fluid level in the reservoir. If necessary, add hydraulic fluid (CIAZ-19582-A) to the proper level.

6. With the engine running at approximately 500 rpm and no steering effort applied, and the lubricant at normal operating temperature, the pressure gauge should show a pressure of less than 50 psi. If the pressure is higher inspect the hoses for kinks and obstructions.

7. Increase the engine speed to 1000 rpm, then slowly close the gauge shut-off valve. With the valve fully closed, the pump pressure should be 1000 to 1150 psi.

Do not close the valve for more than a few seconds (maximum 5 seconds), as this would abnormally increase the lubricant temperature and cause undue pump and/or steering gear wear. Engine rpm should not exceed fast idle during this test.

If pressure is more or less than specification, replace the pump assembly. If pressure is as specified and steering efforts are heavy, the gear could be at fault.

8. Remove the pressure testing gauge set and the tachometer.

FRONT WHEEL ALIGNMENT CHECKS

Do not attempt to check and adjust front wheel alignment without first making a preliminary inspection of the front-end parts. Refer to Section 3.

Check all the factors of front wheel alignment except the turning angle before making any adjustments. The turning angle should be checked only after caster, camber, and toe-in have been adjusted to specifications.

The front wheel alignment specifications given in Part 3-5, are correct only when the vehicle is at curb height. Before checking or adjusting the alignment factors the suspension alignment spacers must be installed to obtain the curb height.

EQUIPMENT INSTALLATION

Equipment used for front wheel alignment inspection must be accurate. Whenever possible, front wheel alignment checks should be performed on stationary wheel aligning equipment. In the absence of such equipment, portable equipment may be used and the work may be performed on a level floor. The floor area should be level within 1/4 inch from front to rear of the vehicle and within 1/8 inch from side to side. Alignment height spacers (Figs. 2 and 3) are used to check caster and camber. The spacers should be omitted when checking toe-in.

1. Check the runout of each front wheel and tire using a dial indicator against the rim outer band. If the runout exceeds 1/8 inch, correction may be made by rotating the wheel on the drum. When the minimum runout has been obtained, mark the point of greatest runout so the wheels can be positioned as shown in Fig. 4 when checking the front end alignment. Hold a piece of chalk against the wheel rim or the tire sidewall while spinning the wheels. The chalk will mark the rim or tire at the point of greatest runout.

2. Drive the vehicle in a straight line far enough to establish the straight-ahead position of the front
wheels, and then mark the steering wheel hub and the steering column collar (Fig. 5). Do not adjust the steering wheel spoke position at this time. If the front wheels are turned at any time during the inspection align the marks to bring the wheels back to the straight-ahead position.

3. With the vehicle in position for the front end alignment inspection and adjustment, install the suspension alignment spacers as follows to establish the curb height.

Lift the front of the vehicle and position the alignment spacers between the suspension lower arm and the frame spring pocket as shown in Fig. 2. Be sure the spacer pin is placed in the correct hole for the vehicle being checked. The lower end of the alignment spacers should be placed over the head of the strut front attaching bolt. Remove the bumpers from the right and left rear side rails. Position the rear alignment spacers between the rear axle and the rear side rails as shown in Fig. 3.

4. Install the wheel alignment equipment on the vehicle. Which ever type of equipment is used, follow the installation and inspection instructions provided by the equipment manufacturer.

CASTER

Check the caster angle at each front wheel.

The caster is the forward or rearward tilt of the top of the wheel spindle (Fig. 6). If the spindle tilts to the rear, caster is positive. If the spindle tilts to the front, caster is negative. The correct caster angle, or tilt, is specified in Part 3-5. The maximum difference between both front wheel caster angles should not exceed 1/2°. However, a difference of not more than 1/4° is preferred.

CAMBER

Check the camber angle at each front wheel.

Camber is the amount the front wheels are tilted at the top (Fig. 6). If a wheel tilts outward, camber is positive. If a wheel tilts inward, camber is negative. The correct camber angle, or outward (positive) tilt, is specified in Part 3-5. The maximum difference between both front wheel camber angles should not exceed 1/2°. However, a difference of not more than 1/4° is preferred.

TOE-IN

Alignment height spacers should not be used to check and adjust toe-

in. Toe-in should only be checked and adjusted after the caster and camber has been adjusted to specifications.

Check the toe-in with the front wheels in the straight-ahead position. Measure the distance between the extreme front and also between the extreme rear of both front wheels. The difference between these two distances is the toe-in.

Correct toe-in, or inward pointing of both front wheels at the front is specified in Part 3-5.

FRONT WHEEL TURNING ANGLE

When the inside wheel is turned 20°, the turning angle of the outside wheel should be as specified in Part 3-6. The turning angle cannot be adjusted directly, because it is a result
of the combination of caster, camber, and toe-in adjustments and should, therefore, be measured only after these adjustments have been made. If the turning angle does not measure to specifications, check the spindle or other suspension parts for a bent condition.

SHOCK ABSORBER CHECKS

ON VEHICLE TESTS

1. Check the shock absorber to be sure it is securely and properly installed. Check the shock absorber insulators for damage and wear. Replace any defective insulators and tighten attachments to the specified torque (on a shock absorber which incorporates integral insulators, replace the shock absorber).

2. Inspect the shock absorber for evidence of fluid leakage. A light film of fluid is permissible. Be sure any fluid observed is not from sources other than the shock absorber. Replace the shock absorber if leakage is severe.

3. Disconnect one end of the shock absorber. Extend and compress the shock absorber as fast as possible, using as much travel as possible. Action should become smooth and uniform throughout each stroke. Higher resistance on extension than on compression is a normal condition. Faint swish noises are also normal.

4. Remove the shock absorber for a bench test if action is erratic. If the action is smooth, but the shock absorbers are suspected of being weak follow step 4:

5. Repeat step 3 on the mating shock absorber installed on the opposite side of the vehicle, and compare results of both tests. If the action is similar, it is unlikely that either shock absorber is defective. Reconnect both shock absorbers.

Replace the shock absorber having the lower resistance. Ensure that the part number of the replacement is the same as that of the original shock absorber. The replacement shock absorber resistance will appear to be higher than either original due to initial friction of the rod seal.

BENCH TEST

With the shock absorber right side up (as installed in vehicle), extend it fully. Then turn the shock absorber side down and fully compress it. Repeat this procedure at least three times to ensure that any entrapped air has been expelled. Now place the shock absorber right side up in a vise, and hand stroke the shock absorber as described in On Vehicle Tests, step 3. If action is not now smooth and uniform, install a new shock absorber.

2 COMMON ADJUSTMENTS AND REPAIRS

After front wheel alignment factors have been checked, make the necessary adjustments. Do not attempt to adjust front wheel alignment by bending the suspension or steering parts.

CAMBER AND caster ADJUSTMENTS

Camber and caster is adjusted by loosening the bolts that attach the upper suspension arm inner shaft to the frame side rail, and moving the inner shaft in or out in the elongated bolt holes with the tool shown in Fig. 7. The tool should be installed with the tool pins in the frame holes and the hooks over the upper arm inner shaft. Then, tighten the tool hook nuts snug before loosening the upper arm inner shaft attaching bolts.

castEr

To adjust the camber angle, install the tool as outlined above (Fig. 7). Loosen both inner shaft attaching bolts and tighten or loosen the hook nuts to move the inner shaft inboard or outboard as necessary with Tool T65P-3000-D to increase or decrease camber (Fig. 8). The camber angle can be checked without tightening the inner shaft attaching bolts.

TOE-IN AND STEERING WHEEL SPOKE POSITION ADJUSTMENTS

Check the steering wheel spoke position when the front wheels are in the straight-ahead position. If the spokes are not in their normal position, they can be properly adjusted while toe-in is being adjusted.

1. Loosen the two clamp bolts on each spindle connecting rod sleeve (Fig. 9).

2. Adjust toe-in. If the steering wheel spokes are not in their normal position, lengthen or shorten both rods equally to obtain correct toe-in (Fig. 9). If the steering wheel spokes are not in their normal position, make the necessary rod adjustments to obtain correct toe-in and steering wheel spoke alignment (Fig. 10).

3. Recheck toe-in and the steering wheel spoke position. If toe-in is correct and the steering wheel spokes are still not in their normal position, turn both connecting rod sleeves upward or downward the same number of turns to move the steering wheel spokes (Fig. 9).

4. When toe-in and the steering wheel spoke position are both correct, torque the clamp bolts on both connecting rod sleeves to specification (Part 3-3). Lubricate clamp, bolt and nut with light oil prior to
PART 3-1—Suspension, Steering, Wheels And Tires General Service

<table>
<thead>
<tr>
<th>SUSPENSION UPPER ARM MOVEMENT</th>
<th>CASTER CHANGE</th>
<th>CAMBER CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Bolt Outboard</td>
<td>Tilt Backward Increase Positive Caster or Decrease Negative Caster</td>
<td>Tilt Outward Increase Positive Camber or Decrease Negative Camber</td>
</tr>
<tr>
<td>Rear Bolt Outboard</td>
<td>Tilt Forward Decrease Positive Caster or Increase Negative Caster</td>
<td>Tilt Inward Decrease Positive Camber or Increase Negative Camber</td>
</tr>
<tr>
<td>Front Bolt Inboard</td>
<td>Tilt Forward Decrease Positive Caster or Increase Negative Caster</td>
<td>Tilt Inward Decrease Positive Camber or Increase Negative Camber</td>
</tr>
<tr>
<td>Rear Bolt Inboard</td>
<td>Tilt Backward Increase Positive Caster or Decrease Negative Caster</td>
<td>Tilt Outward Increase Positive Camber or Decrease Negative Camber</td>
</tr>
</tbody>
</table>

FIG. 8—Caster and Camber Adjustments

Torquing to specification. The sleeve position should not be changed when the clamp bolts are tightened.

WHEEL BALANCING

See the instructions provided with the Rotunda Wheel Balancer.

FIG. 9—Spindle Connecting Rod Adjustments

Left-Hand Sleeve
Right-Hand Sleeve
FIG. 10—Toe-In and Steering Wheel Spoke Alignment Adjustment
CLEANING AND INSPECTION

FRONT END GENERAL INSPECTION

Do not check and adjust front wheel alignment without first making the following inspection for front-end maladjustment, damage, or wear.

1. Check for specified air pressures in all four tires.
2. Raise the front of the vehicle off the floor. Shake each front wheel grasping the upper and lower surfaces of the tire. Check the front suspension ball joints and mountings for looseness, wear, and damage. Check the brake backing plate mountings. Torque all loose nuts and bolts to specification. Replace all worn parts as outlined in Part 3-2.
3. Check the steering gear mountings and all steering linkage connections for looseness. Torque all mountings to specifications. If any of the linkage is worn or bent, replace the parts as outlined in Part 3-3.
4. Check the front wheel bearings. If any in-and-out free play is noticed, adjust the bearings to specifications. Replace worn or damaged bearings as outlined in Part 3-4.
5. Spin each front wheel with a wheel spinner, and check and balance each wheel as required.
6. Check the action of the shock absorbers. If the shock absorbers are not in good condition, the vehicle may not settle in a normal, level position, and front wheel alignment may be affected.

WHEEL INSPECTION

Wheel hub nuts should be inspected and tightened to specification at pre-delivery. Loose wheel hub nuts may cause shimmy and vibration. Elongated stud holes in the wheels may also result from loose hub nuts.

Keep the wheels and hubs clean. Stones wedged between the wheel and drum and lumps of mud or grease can unbalance a wheel and tire.

Check for damage that would affect the runout of the wheels. Wobble or shimmy caused by a damaged wheel will eventually damage the wheel bearings. Inspect the wheel rims for dents that could permit air to leak from the tires.

UPPER BALL JOINT INSPECTION

1. Raise the vehicle on floor jacks placed beneath the lower arms.
2. Ask an assistant to grasp the lower edge of the tire and move the wheel in and out.
3. As the wheel is being moved in and out, observe the upper end of the spindle and the upper arm.
4. Any movement between the upper end of the spindle and the upper arm indicates ball joint wear and loss of preload. If any such movement is observed, replace the upper ball joint.

During the foregoing check, the lower ball joint will be unloaded and may move. Disregard all such movement of the lower ball joint. Also, do not mistake loose wheel bearings for a worn ball joint.

LOWER BALL JOINT INSPECTION

1. Raise the vehicle on jacks placed under the lower arms as shown in Fig. 11. This will unload the lower ball joints.
2. Adjust the wheel bearings as described in Part 3-4.
3. Attach a dial indicator to the lower arm. Position the indicator so that the plunger rests against the upper surface of the spindle at the lower ball joint stud.
4. With the dial indicator attached to the lower arm, position the indicator so that the plunger rests against the inner side of the wheel rim adjacent to the lower ball joint.
5. Grasp the tire at the top and bottom and slowly move the tire in and out (Fig. 11). Note the reading (radial play) on the dial indicator. If the reading exceeds specifications (Part 3-5), replace the lower ball joint.

STEERING GEAR

CLEANING

Disassembly and assembly of the steering gear and the sub-assemblies must be made on a clean workbench. As in repairing any hydraulically operated unit, cleanliness is of utmost importance. The bench, tools, and parts must be kept clean at all times. Thoroughly clean the exterior of the unit with a suitable solvent and, when necessary, drain as much of the hydraulic fluid as possible. Handle all parts very carefully to avoid nicks, burrs, scratches and dirt, which could make the parts unfit for use.

FIG. 11—Measuring Upper Ball Joint Radial Play

INSTRUCTION

1. Check the sector shaft bushing if so equipped, or journal in the cover for wear. If worn, replace the cover.
2. Inspect the input shaft bearing for cracked races and the balls for looseness, wear, pitting, end play or other damage. Check the fit of the bearing on the input shaft. Replace the bearing, if required.
3. Inspect the valve housing for wear, scoring or burrs.
4. Inspect the tube seats in the pressure and return ports in the valve body for nicks, etc. If necessary, remove and replace.
5. Check the sector shaft bushings if so equipped, or journal in the housing for wear. If worn, replace the bushings or housing.
6. Check all fluid passages for obstruction or leakage.
7. Inspect the steering gear housing for cracks, stripped threads, and mating surfaces for burrs. Inspect the piston bore of the housing for scoring or wear. If necessary, replace the housing.
8. Check the input shaft bearing after installation to be sure that it rotates freely.
9. If the valve spool is not free in the valve housing, check for burrs at the outward edges of the working lands in the housing and remove with a hard stone. Check the valve spool for burrs and, if burrs are found, stone the valve in a radial direction only. Check for freedom of the valve again.
10. Check the piston rack teeth and sector shaft teeth for nicks and burrs.
FLUSHING THE POWER STEERING SYSTEM

Should a power steering pump become inoperative, the shaft and pulley should be checked for freedom of rotation. If the pump shaft does not turn freely (binding), it is an indication that there is wear on the pump internal components and the need for flushing the steering system is required when installing a new pump.

1. Remove the power steering pump and remove the pulley as outlined in Part 3-3.
2. Install the pulley on a new pump. Install the pump and connect only the pressure hose to the pump (Part 3-3).
3. Place the fluid from the return line in a suitable container and plug the reservoir return pipe.
4. Fill the reservoir with hydraulic fluid (C1AZ-19582-A).
5. Disconnect the coil wire to prevent the engine from starting and raise the front wheels off the ground.
6. While approximately two quarts of steering gear lubricant are being poured into the reservoir, turn the engine over using the ignition key, at the same time cycle the steering wheel from stop to stop.
7. As soon as all of the lubricant has been poured in, turn off the ignition key, and attach the coil wire.
8. Remove the plug from the reservoir return pipe, and attach the return hose to the reservoir.
9. Check the reservoir fluid level; if low, add fluid to the proper level. Do not overfill.
10. Lower the vehicle.
11. Start the engine and cycle the steering from stop to stop to expel any trapped air from the system.

<table>
<thead>
<tr>
<th>JERKY STEERING</th>
<th>Low fluid level or fluid leakage. Obstruction in power steering lines or within the steering gear.</th>
<th>Loose steering gear mountings. Incorrect steering gear adjustment. Loose or worn drive belt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARD STEERING AND/OR LOSS OF POWER ASSIST</td>
<td>Low fluid level or fluid leakage. Air in power steering system. Obstruction in power steering lines or within the steering gear. Insufficient power steering pump pressure.</td>
<td>Incorrect steering gear adjustment. Steering gear valve spool binding or out of adjustment. Loose or worn drive belt.</td>
</tr>
<tr>
<td>HARD TURNING WHEN STATIONARY</td>
<td>Low fluid level or fluid leakage. Obstruction in power steering lines or within the steering gear.</td>
<td>Insufficient power steering pump pressure. Loose or worn drive belt.</td>
</tr>
<tr>
<td>STEERING AND SUSPENSION NOISES</td>
<td>Low fluid level or fluid leakage. Air in power steering system. Obstruction in power steering lines or within the steering gear.</td>
<td>Loose steering gear mountings. Insufficient power steering pump pressure. Incorrect steering gear adjustment.</td>
</tr>
<tr>
<td>LOOSE STEERING SHIMMY SIDE-TO-SIDE WANDER OR WHEEL TRAMP OR</td>
<td>Loose steering gear mountings.</td>
<td>Incorrect steering gear adjustment.</td>
</tr>
<tr>
<td>BINDING OR POOR RECOVERY</td>
<td>Insufficient power steering pump pressure. Incorrect steering gear adjustment. Steering gear valve spool binding or out of adjustment.</td>
<td>Obstruction within the steering gear. Loose or worn drive belt.</td>
</tr>
<tr>
<td>BODY SWAY OR ROLL</td>
<td>Incorrect steering gear adjustment.</td>
<td></td>
</tr>
<tr>
<td>HARDER STEERING IN ONE DIRECTION</td>
<td>Steering gear valve spool binding or out of adjustment.</td>
<td></td>
</tr>
<tr>
<td>ABNORMAL OR IRREGULAR TIRE WEAR</td>
<td>Incorrect steering gear adjustment.</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 12—Diagnosis Guide
Possible Causes of Trouble

<table>
<thead>
<tr>
<th>Possible Cause of Trouble</th>
<th>T/L</th>
<th>J/ty Steering</th>
<th>L/ose Steering</th>
<th>H/ard Steering and/or Loss of Power Assist</th>
<th>H/ard Turning When Stationary</th>
<th>S/teering and Suspension Noise</th>
<th>S/himmy or Wheel Tramp</th>
<th>P/ull to One Side</th>
<th>S/id/e-to-Side Wander</th>
<th>B/ody Sway or Roll</th>
<th>T/ire Squeal on Turns</th>
<th>B/inding or Poor Recovery</th>
<th>A/bsorbing or Irregular Tire Wear</th>
<th>S/ag at One Wheel</th>
<th>H/ard or Rough Ride</th>
<th>R/ear Suspension Misalignment (Dog Tracking)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Incorrect Tire Pressure</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Tire Sizes Not Uniform</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Overloaded or Unevenly Loaded Vehicle</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. Power Steering Fluid Level Low-Leak</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Sagging Spring</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6. Glazed, Loose or Broken Power Steering Pump Belt</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7. Bent Spindle Arm</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8. Bent Spindle</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>9. Lack of Lubrication</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10. Air in Power Steering System</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11. Obstruction in Power Steering Lines</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12. Loose or Weak Shock Absorber</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>13. Loose or Worn Suspension Arm Bushings</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14. Binding Front Suspension Ball Joints or Steering Linkage</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>15. Loose, Worn, or Damaged Steering Linkage or Connections</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>16. Loose Steering Gear Mountings</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>17. Insufficient Steering Pump Pressure</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>18. Incorrect Steering Gear Adjustment</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>19. Incorrect Brake Adjustment</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>20. Incorrect Front Wheel Bearing Adjustment</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21. Wheel Out of Balance</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>22. Incorrect Front Wheel Alignment</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>23. Out-of-Round Wheel or Brake Drum</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>24. Frame or Underbody Out of Alignment</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25. Bent Rear Axle Housing</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>26. Excessive Wear of Power Steering Pump Internal Parts</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27. Steering Gear Valve Spool Binding or Out of Adjustment</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>28. Obstruction Within Steering Gear</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>29. Loose or Worn Drive Belt</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
PART 3-2—Suspension

Section	Page	Section	Page
1 Description and Operation | 3-9 | Front Suspension Lower Arm | 3-13
Front Suspension | 3-9 | Front Suspension Upper Arm | 3-14
Rear Suspension | 3-9 | Rear Suspension Spindle | 3-15
2 In-Vehicle Adjustments and Repairs | 3-12 | Upper Ball Joint Replacement—Arm in Vehicle | 3-16
Upper Ball Joint Replacement—Arm in Vehicle | 3-12 | Rear Suspension Upper Arm | 3-16
Lower Ball Joint Replacement—Arm in Vehicle | 3-12 | Track Bar | 3-16
Stabilizer Repair | 3-12 | Shock Absorbers | 3-16
Front Suspension Lower Arm Strut and/or Bushing | 3-13 | Front Suspension Upper Arm Bushings—Arm Removed | 3-17
3 Removal and Installation | 3-13 | 4 Major Repair Operations | 3-17
Hoisting Instructions | 3-13 | | | | | |

1 DESCRIPTION AND OPERATION

FRONT SUSPENSION

Each front wheel rotates on a spindle. The upper and lower ends of the spindle are attached to upper and lower ball joints which are mounted to an upper and lower arm respectively. The upper arm pivots on a bushing and shaft assembly which is bolted to the frame. The lower arm pivots on a bolt in the front crossmember (Fig. 1). A coil spring seats between the lower arm and the top of the spring housing. A double action shock absorber is bolted to the arm and the top of the spring housing.

The swiveling action of the ball joints allows the wheel and spindle assemblies to move up and down with changes in road surfaces. The swiveling ball joints also permit the spindles and wheels to be turned to the left or right by the steering gear and linkage.

The pivoting action of the suspension arms provides an up-and-down movement for the spindles and wheels as required by bumps or depressions in the road surface. The coil springs and shock absorbers control this up-and-down movement. The stabilizer bar (Fig. 1) is attached to each lower arm to dampen road shocks and minimize road sway. The struts, which are connected between the suspension lower arms and the frame crossmember prevent the suspension arms from moving forward and backward.

REAR SUSPENSION

Each rear wheel, hub, and brake drum assembly is bolted to the rear axle shaft flange. The wheel and axle shaft assembly rotates in the rear axle housing.

The rear axle housing and wheel assembly is suspended from the frame by a coil spring and shock absorber at each side of the vehicle and by three arms (one upper and two lower) which pivot in the frame members (Fig. 2).

Each coil spring is mounted between a lower seat, which is welded to the axle housing, and an upper seat which is integral with the frame. The upper end of the rear shock absorber is attached to the spring upper seat; the lower end is bolted to a bracket on the axle housing.

The upper suspension arm attaches to the right side of the axle housing through an eccentric pivot bolt and a bracket which is welded to the top of the housing. The forward end of the arm is connected by a pivot bolt to the frame crossmember.

Each lower suspension arm attaches to one end of the axle housing through a pivot bolt and a bracket which is welded to the underside of the housing. The forward end of the arm is connected by a pivot bolt to the frame side member.

A track bar is connected between the upper arm bracket on the axle housing and a mounting bracket on the left frame side rail.

All of the above mentioned components work together to control the position and the movement of the rear axle housing and wheel assembly. The coil springs and shock absorbers cushion road shocks and bumps. The suspension arms prevent forward or rearward movement of the axle housing and wheel assembly with respect to the frame. The pivoting action of the suspension arms provides an up-and-down movement for the axle and wheel assembly as required by changes in the road surface. The track bar holds the assembly in proper alignment with the frame to prevent lateral swaying action.
FIG. 1—Front Suspension Disassembled
IN-VEHICLE ADJUSTMENTS AND REPAIRS

HOISTING INSTRUCTIONS

Damage to steering linkage components and front suspension struts may occur if care is not exercised when positioning the hoist adapters of 2 post hoists prior to lifting the vehicle.

If a 2 post hoist is used to lift the car, place the adapters under the lower arms or the No. 1 crossmember. Do not allow the adapters to contact the steering linkage. If the adapters are placed under the crossmember, a piece of wood (2x4x16 inches) should be placed on the hoist channel between the adapters. This will prevent the adapters from damaging the front suspension struts.

UPPER BALL JOINT REPLACEMENT—ARM IN VEHICLE

1. Raise the vehicle high enough to provide working space, and place a support under the lower arm. If a chain hoist or a jack that has a narrow contact pad is to be used on the bumper to raise the vehicle, distribute the load along the bumper by using a steel plate 3 or 4 inches long as a contact pad to prevent damaging the bumper.
2. Remove the wheel and tire.
3. Drill a 1/8-inch hole through each upper ball joint retaining rivet. Using a large chisel, cut off the rivets.
4. Remove the upper arm suspension bumper.
5. Remove the cotter pin and nut from the upper ball joint stud.
6. Place a box wrench over the lower end of the ball joint remover tool, and position the tool as in Fig. 3. The tool should seat firmly against the ends of both studs, and not against the lower stud nut.
7. Turn the wrench until both studs are under tension, and then, with a hammer, tap the spindle near the upper stud to loosen the stud from the spindle. Do not attempt to loosen the stud with tool pressure alone. Remove the ball joint.
8. Clean the end of the arm, and remove all burrs from the hole edges. Check for cracks in the metal at the holes, and replace the arm if it is cracked.
9. Attach the new ball joint to the upper arm. Use only the specified bolts, nuts, and washers. Do not rivet the new ball joints to the arm. Torque the nuts to specification.
10. Install the upper arm suspension bumper. Torque the nut to specification.
11. Position the ball joint stud in the spindle bore, and torque the attaching nut to specification. Install a new cotter pin.
12. Install the wheel and tire.
13. Remove the safety stands, and lower the vehicle.
14. Check and, if necessary, adjust caster, camber, and toe-in. Whenever any part of the front suspension has been removed and installed, front wheel alignment must be checked.

LOWER BALL JOINT REPLACEMENT—ARM IN VEHICLE

1. Raise the vehicle high enough to provide working space, leaving the lower arm free to drop as coil spring tension is eased. If a chain hoist or a jack that has a narrow contact pad is to be used on the bumper to raise the vehicle, distribute the load along the bumper by using a steel plate 3 or 4 inches long as a contact pad to prevent damaging the bumper.
2. If the ball joint is riveted to the arm, drill a 1/8-inch pilot hole completely through each rivet. Then drive out the rivet head through the pilot hole with a 3/8-inch drill, and drive out both rivets.
3. Position a jack or safety stand under the lower arm, and lower the vehicle about 6 inches to offset the coil spring tension.
4. Remove the cotter pin from the ball joint stud, and remove the nut.
5. Place a box wrench over the lower end of the tool shown in Fig. 3, and position the tool. The tool should seat firmly against the end of both studs, and not against the upper stud nut.
6. Turn the wrench until both studs are under tension, and then, with a hammer, tap the spindle near the lower stud to loosen the stud from the spindle. Do not loosen the stud with tool pressure alone. Remove the ball joint.
7. Clean the end of the arm, and remove all burrs from the hole edges. Check for cracks in the metal at the holes, and replace the arm if it is cracked.
8. Position the stud of the ball joint to the spindle bore, and install the retaining nut finger-tight.
9. Attach the ball joint to the lower arm. Use only the specified bolts, nuts, and washers. Do not rivet the new ball joint to the arm. Torque nuts to specifications.
10. Torque the ball joint stud nut to specification, and install a new cotter pin.
11. Remove the jack.
12. Check and, if necessary, adjust caster, camber, and toe-in. Whenever any part of the front suspension has been removed and installed, front wheel alignment must be checked.

STABILIZER REPAIR

To replace the end bushings on each stabilizer link, use the following procedure.
1. Raise the vehicle on a hoist.
2. Remove the link-to-stabilizer bar retaining nut, washers, and insulators, and disconnect the link from the bar (Fig. 1).
3. Remove the link-to-lower arm retaining nut, washers, and insulators, and remove the link from the arm.
4. Assemble the link and new washers and insulators to the lower arm, then install the link-to-lower arm attaching nut.
5. Connect the link to the bar with new washers and insulators and secure with the attaching nut.
6. Lower the vehicle.

FRONT SUSPENSION LOWER ARM STRUT AND/OR BUSHING

1. Remove the cotter pin from the lower arm strut at the frame front crossmember and remove the nut, washer, and bushing from the strut.
2. Remove nuts, washers, and bolts attaching the strut and rubber bumper to the lower arm (Fig. 1).
3. Pull the strut from the frame crossmember.
4. Remove the crossmember rear side bushing and washer from the strut.
5. Place the crossmember rear side washer and bushing on the strut and position the strut to the frame and lower arm.
6. Position the rubber bumper on the strut and install the bolts, washers, and nuts attaching the strut to the lower arm. Torque the nuts and bolts to specification.
7. Install the bushing, washer, and nut on the strut at the front crossmember. Tighten the nut and install the cotter pin.
8. Check caster, camber, and toe-in and adjust if necessary.

3 REMOVAL AND INSTALLATION

HOISTING INSTRUCTIONS

Damage to steering linkage components and front suspension struts may occur if care is not exercised when positioning the hoist adapters of 2 post hoists prior to lifting the vehicle.

If a 2 post hoist is used to lift the vehicle, place the adapters under the lower arms or the No. 1 crossmember. Do not allow the adapters to contact the steering linkage. If the adapters are placed under the crossmember, a piece of wood (2x4x16 inches) should be placed on the hoist channel between the adapters. This will prevent the adapters from damaging the front suspension struts.

FRONT SUSPENSION LOWER ARM REMOVAL

1. Raise the front of the vehicle and position safety stands under both sides of the frame just back of the lower arms.
2. Remove the wheel cover.
3. Remove the wheel and tire from the hub. Remove 2 bolts and washers that attach the caliper and brake hose bracket to the spindle. Remove the caliper from the rotor and wire it to the underbody to prevent damage to the brake hose. Then, remove the hub and rotor from the spindle.
4. Disconnect the lower end of the shock absorber and push it up to the retracted position.
5. Disconnect the stabilizer bar link from the lower arm.
6. Remove the cotter pins from the upper and lower ball joint stud nuts.
7. Remove 2 bolts and nuts attaching the strut to the lower arm.
8. Loosen the lower ball joint stud nut one or two turns. Do not remove the nut from the stud at this time.
9. Install Tool T57P-3006-A between the upper and lower ball joint studs (Fig. 3). The tool should be seated firmly against the ends of both studs and not against the stud nuts.
10. With a wrench, turn the adapter screw until the tool places the stud under tension. Tap the spindle near the lower stud with a hammer to loosen the stud in the spindle. Do not loosen the stud from the spindle with tool pressure only.
11. Position a floor jack under the lower arm and remove the lower ball joint stud nut.
12. Lower the floor jack and remove the spring and insulator (Fig. 4).
13. Remove one nut and bolt attaching the lower control arm to the No. 2 crossmember and remove the lower arm.

INSTALLATION

1. Position the lower arm to the No. 2 crossmember and loosely install the attaching bolt and nut (Fig. 4).
2. Position the spring and insulator to the upper spring pad and lower arm. Using a floor jack, compress the spring and guide the lower ball joint stud into the spindle hole.
3. Install the ball joint stud attaching nut and torque to specification. Continue to tighten the nut until the cotter pin hole is in line with the nut slots. Install a cotter pin in the upper and lower ball joint studs.
4. Pull the shock absorber down and connect to the lower arm.
5. Position the strut and bumper to the lower arm. Install the attaching bolts and nuts and torque to specification.
6. Torque the lower arm to No. 2 crossmember attaching bolt and nut to specifications.
7. Position the stabilizer bar link to the lower arm and install the attaching nuts.
8. If equipped with disc brakes—Install the hub and rotor on the spindle. Position the caliper over the rotor and install the attaching bolts. Be sure to insert the upper bolt through the brake hose bracket. Torque the bolts to specification. Install the wheel and tire on the hub and adjust the wheel bearings as outlined in Part 3-4.

FIG. 4—Removing Lower Arm—Typical
9. Install the hub cap or wheel cover.
10. Remove the safety stands and lower the vehicle.
11. Check the caster, camber, and toe-in and adjust as required (Section 2, Part 3-1).

FRONT SPRING

1. Raise the vehicle and support the front end of the frame with jack stands.
2. Place a jack under the lower arm to support it.
3. Disconnect the lower end of the shock absorber from the lower arm.
4. Remove the bolts that attach the strut and the rebound bumper to the lower arm.
5. Disconnect the lower end of sway bar stud from the lower arm.
6. Remove the nut and bolt that secures the inner end of the lower arm to the crossmember.
7. Carefully lower the jack slowly to relieve the spring pressure on the lower arm, then remove the spring.

INSTALLATION

1. Position the spring on the lower arm so that the lower end properly engages the seat.
2. Raise the lower arm carefully with a jack while guiding the inner end to align with the bolt hole in the crossmember. Insert the attaching bolt in the rear of the crossmember and through the lower arm. Install and torque the nut to specification.
3. Secure the lower end of the shock absorber to the lower arm with the two attaching bolts.
4. Secure the strut and the rebound bumper to the lower arm with the two attaching bolts. Torque the bolts to specification.
5. Connect the sway bar to the lower arm with the attaching washers and insulators as shown in Fig. 1 on page 3-11 of the 1966 Ford—Mercury Shop Manual. Torque the nut to specification.
6. Check the front end alignment and adjust it to the recommended specifications if required.

FRONT SUSPENSION UPPER ARM

REMOVAL

1. Raise the front of the vehicle and position safety stands under both sides of the frame just back of the lower arm.
2. Remove the hub cap or wheel cover.
3. Remove the wheel and tire from the hub.
4. Remove the cotter pin from the upper ball joint stud nut.
5. Loosen the upper ball joint stud nut one or two turns. Do not remove the nut from the stud at this time.
6. Install tool T57P-3006-A between the upper and lower ball joint studs with the adapter screw on top (Fig. 3). The tool should be seated firmly against the ends of both studs and not against the nuts or lower stud cotter pin.
7. With a wrench, turn the adapter screw until the tool places the stud under tension. Tap the spindle near the upper stud with a hammer to loosen the stud in the spindle. Do not attempt to loosen the stud from the spindle with tool pressure only.
8. Remove the tool from between the ball joint studs and place a floor jack under the lower arm.
9. Raise the floor jack to relieve the pressure from the upper ball joint stud nut and remove the nut.
10. Remove the upper arm inner shaft attaching bolts. Remove the upper arm and inner shaft as an assembly (Fig. 4).
11. Remove the bumper from the upper arm.

INSTALLATION

1. Position the bumper to the upper arm and install the nut and washer. Torque the nut to specifications.
2. Position the upper arm inner shaft to the frame side rail and install the 2 attaching bolts and washers snug.
3. Connect the upper ball joint stud to the spindle and install the retaining nut. Torque the nut to specification and continue to tighten the nut until the cotter pin hole in the stud is in line with the nut slots. Then, install the cotter pin.
4. Install the wheel and tire on the hub and adjust the wheel bearings as outlined in Part 3-4.
5. Install the hub cap or wheel cover.
6. Remove the safety stands and lower the front of the vehicle.
7. Check caster, camber, and toe-in and adjust as required (Section 2, Part 3-1).
slots in the nut. Then, install the cotter pin.

5. Install the splash shield on the spindle and torque the attaching bolts to specification (Part 3-5). Install the hub and rotor on the spindle. Position the caliper over the rotor and install the attaching bolts. Be sure to insert the upper bolt through the brake hose bracket. Torque the bolts to specification (Part 3-5). Install the wheel and tire on the hub and adjust the wheel bearings as outlined in Part 3-4).

6. Install the hub cap or wheel cover. Then, remove the support stand and lower the vehicle.

7. Check caster, camber, and toe-in (Part 3-1) and adjust as necessary.

REAR SPRING

REMOVAL

1. Raise the vehicle on a hoist with the hoist under the rear axle housing. Place jack stands under the frame side rails.

2. Disconnect the lower studs of the two rear shock absorbers from the mounting brackets on axle housing.

3. Lower the hoist and axle housing until the coil springs are released (Fig. 5).

4. Remove the springs and the insulators from the vehicle.

INSTALLATION

1. Position the spring in the upper and lower seats with an insulator between each seat and the spring. Position lower end of spring pig tail outboard, pointing rearward on the right hand spring; frontward on the left spring.

2. Raise the hoist and axle housing with the spring in position and connect the lower studs of the rear shock absorbers to the mounting brackets on the axle housing. Install the mounting nuts, and torque to specifications.

3. Remove the jack stands and lower the vehicle.

REAR SUSPENSION LOWER ARM

REMOVAL

1. Raise the vehicle on a hoist and place jack stands under the frame side rails.

2. Remove the attaching nut and washer from the axle track bar mounting stud and disconnect the bar from the stud (Fig. 2).

3. Disconnect the right and left shock absorbers from the axle.

4. Lower the axle enough to relieve spring pressure.

5. Remove the lower arm pivot bolt and nut from the axle bracket. Then, disengage the lower arm from the bracket.

6. Remove the pivot bolt and nut from the frame bracket and remove the lower arm from the vehicle.

INSTALLATION

The rear suspension lower arms are not interchangeable. The lower arm for the left side can be identified by notches in the bushing flange (Fig. 2). The right arm does not have the notches.

1. Position the lower arm in the bracket on the frame side rail. Install a new pivot bolt and nut (Fig. 6). Do not tighten the nut at this time.

2. Position the lower arm to the axle bracket and install a new bolt and nut (Fig. 6). Do not tighten the nut at this time.

3. Raise the axle and connect the rear shock absorbers to the axle.

4. Install alignment spacers (Tool T65P-3000-B or C) between the rear axle and frame (Fig. 3, Part 3-1). Then, torque the lower arm pivot bolts and nuts to specification (Part 3-5).

5. Connect the track bar to the mounting stud. Install the washer and attaching nut, and torque to specification (Part 3-5).

6. Remove the alignment spacers and jack stands and lower the vehicle.
REAR SUSPENSION
UPPER ARM

REMOVAL

1. Raise the vehicle and support the frame side rails with jack stands.
2. Support the rear axle, then disconnect the track bar from the axle housing.
3. Lower the axle far enough to allow the shock absorbers to support it.
4. Remove the nut, bolt and two washers that attach the upper arm to the axle housing. Disconnect the arm from the housing.
5. Remove the nut and bolt that secures the upper arm to the cross-member and remove the arm.

INSTALLATION

1. Hold the upper arm in place on the crossmember and install the attaching new bolt and a new nut. Do not tighten the nut at this time.
2. Secure the upper arm to the axle housing using the flat washers and new attaching bolt, nut and lockwasher. Do not tighten the nut at this time.
3. Adjust the pinion angle as detailed in Part 3-1.
4. Remove jack stands and lower the vehicle.

TRACK BAR

1. Raise the vehicle on an axle contact hoist.
2. Remove rubber cover at axle attachment of track bar.
3. Remove the nut and washer retaining the track bar to the upper arm bracket and disengage the track bar from the mounting stud (Fig. 5).
4. Remove the nut and bolt attaching the track bar to the frame side rail and remove the track bar.
5. Position the track bar to the frame side rail and install a new attaching bolt and nut.
6. Position the track bar on the upper arm bracket mounting stud and install the washer and a new attaching nut. Torque the track bar attaching bolt and nuts to specification (Part 3-5). Apply lubrication (synthetic rubber lubricant) to the inside diameter of the rubber cover. Position rubber cover over track bar stud and nut. Secure the rubber cover onto the large flat washer. Then, lower the vehicle.

SHOCK ABSORBERS

Passenger vehicles and station wagons are equipped with hydraulic shock absorbers of the direct-acting type and are nonadjustable and non-refillable, and cannot be repaired.

SHOCK ABSORBER TESTS

On Vehicle Tests

1. Check the shock absorber to be sure it is securely and properly installed. Check the shock absorber insulators for damage and wear.
2. Inspect the shock absorber for evidence of fluid leakage. A light film of fluid is permissible. Be sure any fluid observed is not from sources other than the shock absorber.
3. Disconnect one end of the shock absorber. Extend and compress the shock absorber as fast as possible, using as much travel as possible. Action should become smooth and uniform throughout each stroke. Higher resistance on extension than on compression is a normal condition. Faint swish noises are also normal.
4. Repeat step 3 on the mating shock absorber installed on the opposite side of the vehicle, and compare results of both tests. If the action is similar, it is unlikely that either shock absorber is defective. Reconnect both shock absorbers.
5. Replace the shock absorber having the lower resistance. Ensure that the part number of the replacement is the same as that of the original shock absorber. The replacement shock absorber resistance will appear to be higher than either original due to initial friction of the rod seal.

Bench Test

With the shock absorber right side up (as installed in vehicle), extend it fully. Then turn the shock absorber up side down and fully compress it. Repeat this procedure at least three times to ensure that any entrapped air has been expelled. Now place the shock absorber right side up in a vise, and hand stroke the shock absorber as described on On Vehicle Tests, step 3. If action is not now smooth and uniform, install a new shock absorber.
FRONT SHOCK ABSORBER REPLACEMENT

1. Remove the nut, washer, and bushing from the shock absorber upper end.
2. Raise the vehicle on a hoist and install safety stands.
3. Remove 2 bolts attaching the shock absorber to the lower arm and remove the shock absorber.
4. Place a washer and bushing on the shock absorber top stud and position the shock absorber inside the front spring. Install the 2 lower attaching bolts and torque them to specifications.
5. Remove the safety stands and lower the vehicle.
6. Place a bushing and washer on the shock absorber top stud and install the attaching nut. Torque to specifications.

REAR SHOCK ABSORBER REPLACEMENT

1. Raise the vehicle on a hoist.
2. Remove the shock absorber mounting nut, washer and insulator from the upper stud at the upper side of the spring upper seat. Compress the shock absorber to clear the hole in the spring seat, and remove the inner insulator and washer from the upper mounting stud.
3. Remove the self-locking retaining nut, and disconnect the shock absorber lower stud from the mounting bracket on the rear axle housing (Fig. 2).
4. Expel all air by performing step 3 under On Vehicle Tests.
5. Place the inner washer and insulator on the upper mounting stud, and position the shock absorber so that the upper mounting stud enters the hole in the spring upper seat. While holding the shock absorber in this position, install the outer insulator and washer and the nut on the upper stud from the upper side of the spring upper seat. Torque the nut to specifications.
6. Extend the shock absorber and locate the lower stud in the hole in mounting bracket on the rear axle housing. Install a new self-locking attaching nut and torque to specifications.

MAJOR REPAIR OPERATIONS

FRONT SUSPENSION UPPER ARM BUSHINGS—ARM REMOVED

1. Remove the nuts and washers from both ends of the upper arm inner shaft.
2. Install Tool T65P-3044-A1 on the inner shaft and place Tool T65P-3044-A3 inside the upper arm around the inner shaft (Fig. 7).
3. Position the upper arm in an arbor press on Tool T65P-3044-A4 (Fig. 7), and press the lower bushing out of the upper arm.
4. Remove the bushing from the inner shaft; turn the assembly over and remove the bushing from the other side of the arm. It may be necessary to remove Tool T65P-3044-A1 from the inner shaft and remove the shaft from the arm to remove the bushing from the shaft. Then, install the tool on the shaft and remove the other bushing.
5. Position the shaft and bushings to the upper arm and install the bushings and inner shaft in the upper arm as shown in Fig. 8.
6. Install a washer and new nut on each end of the inner shaft.
PART 3-3—Steering

1 DESCRIPTION AND OPERATION

STEERING GEAR

DESCRIPTION

The power steering unit (Fig. 1) is a torsion-bar type of hydraulic assisted system. This system furnishes power to reduce the amount of turning effort required at the steering wheel. It also reduces road shock and vibrations.

The torsion bar power steering unit includes a worm and one-piece rack piston, which is meshed to the gear teeth on the steering sector shaft. The unit also includes a hydraulic valve, valve actuator, input shaft and torsion bar assembly which are mounted on the end of the worm shaft and operated by the twisting action of the torsion bar.

The torsion-bar type of power steering gear is designed with the one piece rack-piston, worm and sector shaft in one housing and the valve spool in an attaching housing (Fig. 1). This makes possible internal fluid passages between the valve and cylinder, thus eliminating all external lines and hoses, except the pressure and return hoses between the pump and gear assembly.

The power cylinder is an integral part of the gear housing. The piston is double acting, in that fluid pressure may be applied to either side of the piston.

A selective metal shim, located in the valve housing of the gear is for the purpose of tailoring steering gear efforts. If efforts are not within specifications they can be changed by increasing or decreasing shim thickness as follows:

- Efforts heavy to the left—Increase shim thickness.
- Efforts light to the left—Decrease shim thickness.

Shims are available in the following thicknesses and are notched on the outside diameter for identification:

0.0057-0.0063 inch—0 notch
0.0077-0.0083 inch—1 notch
0.0097-0.0103 inch—2 notches
0.0117-0.0123 inch—3 notches
0.0137-0.0143 inch—4 notches

Do not use more than one shim.

The operation of the hydraulic control valve spool is governed by the twisting of a torsion bar. All effort applied to the steering wheel is transmitted directly through the input shaft and torsion bar to the worm assembly and integral piston. Any resistance to the turning of the front wheels, results in twisting of the bar. The twisting of the bar increases as the front wheel turning effort increases. The control valve spool actuated by the twisting of the torsion bar, directs fluid to the side of the piston where hydraulic assist is required.

The upper end of the torsion bar...